- 264.00 KB
- 2021-11-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
24.1.3 弧、弦、圆心角
1. 通过学习圆的旋转性,理解圆的弧、弦、圆心角之间的关系.
2. 运用上述三者之间的关系来计算或证明有关问题.
重点:圆的弧、弦、圆心角之间的关系定理.
难点:探索推导定理及其应用.
一、自学指导.(10分钟)
自学:自学教材P83~84内容,回答下列问题.
探究:
1.顶点在__圆心__的角叫做圆心角,能够重合的圆叫做__等圆__;能够__重合__的弧叫做等弧;圆绕其圆心旋转任意角度都能够与原来的图形重合,这就是圆的__旋转性__.
2.在同圆或等圆中,相等的圆心角所对的弧__相等__,所对的弦也__相等__.
3.在同圆或等圆中,两个__圆心角__,两条__弦__,两条__弧__中有一组量相等,它们所对应的其余各组量也相等.
4.在⊙O中,AB,CD是两条弦,
(1)如果AB=CD,那么__=,__∠AOB=∠COD__;
(2)如果=,那么__AB=CD__,__∠AOB=∠COD;
(3)如果∠AOB=∠COD,那么__AB=CD__,=__.
二、自学检测:学生自主完成,小组内展示,点评,教师巡视.(6分钟)
1.如图,AD是⊙O的直径,AB=AC,∠CAB=120°,根据以上条件写出三个正确结论.(半径相等除外)
(1)__△ACO_≌_△ABO__;
(2)__AD垂直平分BC__;
(3)=.
2.如图,在⊙O中,=,∠ACB=60°,求证:∠AOB=∠BOC=∠AOC.
4
证明:∵=,∴AB=AC.
又∵∠ACB=60°,
∴△ABC为等边三角形,
∴AB=AC=BC,
∴∠AOB=∠BOC=∠AOC.
,第2题图) ,第3题图)
3.如图,(1)已知=.求证:AB=CD.
(2)如果AD=BC,求证:=.
证明:(1)∵=,
∴+=+,
∴=,∴AB=CD.
(2)∵AD=BC,
∴=,
∴+=+,即=.
一、小组合作:小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(7分钟)
1.⊙O中,一条弦AB所对的劣弧为圆周的,则弦AB所对的圆心角为__90°__.
点拨精讲:整个圆周所对的圆心角即以圆心为顶点的周角.
2.在半径为2的⊙O中,圆心O到弦AB的距离为1,则弦AB所对的圆心角的度数为__120°__.
3.如图,在⊙O中,=,∠ACB=75°,求∠BAC的度数.
解:30°.
,第3题图) ,第4题图)
4.如图,AB,CD是⊙O的弦,且AB与CD不平行,M,N分别是AB,CD的中点,
4
AB=CD,那么∠AMN与∠CNM的大小关系是什么?为什么?
点拨精讲:(1)OM,ON具备垂径定理推论的条件.
(2)同圆或等圆中,等弦的弦心距也相等.
解:∠AMN=∠CNM.
∵AB=CD,M,N为AB,CD中点,
∴OM=ON,OM⊥AB,ON⊥CD,
∴∠OMA=∠ONC,∠OMN=∠ONM,
∴∠OMA-∠OMN=∠ONC-∠ONM.
即∠AMN=∠CNM.
二、跟踪练习:学生独立确定解题思路,小组内交流,上台展示并讲解思路.(10分钟)
1.如图,AB是⊙O的直径,==,∠COD=35°,求∠AOE的度数.
解:75°.
,第1题图) ,第2题图)
2.如图所示,CD为⊙O的弦,在CD上截取CE=DF,连接OE,OF,它们的延长线交⊙O于点A,B.
(1)试判断△OEF的形状,并说明理由;
(2)求证:=.
解:(1)△OEF为等腰三角形.
理由:过点O作OG⊥CD于点G,
则CG=DG.∵CE=DF,
∴CG-CE=DG-DF.
∴EG=FG.∵OG⊥CD,
∴OG为线段EF的垂直平分线.
∴OE=OF,
∴△OEF为等腰三角形.
(2)证明:连接AC,BD.
由(1)知OE=OF,
又∵OA=OB,
∴AE=BF,∠OEF=∠OFE.
∵∠CEA=∠OEF,∠DFB=∠OFE,
∴∠CEA=∠DFB.
在△CEA与△DFB中,
AE=BF,∠CEA=∠BFD,CE=DF,
∴△CEA≌△DFB,∴AC=BD,∴=.
点拨精讲:(1)过圆心作垂径;(2)连接AC,BD,通过证弦等来证弧等.
3.已知:如图,AB是⊙O的直径,M,N是AO,BO
4
的中点.CM⊥AB,DN⊥AB,分别与圆交于C,D点.求证:=.
证明:连接AC,OC,OD,BD.
∵M,N为AO,BO中点,
∴OM=ON,AM=BN.
∵CM⊥AB,DN⊥AB,
∴∠CMO=∠DNO=90°.
在Rt△CMO与Rt△DNO中,
OM=ON,OC=OD,
∴Rt△CMO≌Rt△DNO.
∴CM=DN.在Rt△AMC和Rt△BND中,
AM=BN,∠AMC=∠BND,CM=DN,
∴△AMC≌△BND.
∴AC=BD.∴=.
点拨精讲:连接AC,OC,OD,BD,构造三角形.
学生总结本堂课的收获与困惑.(2分钟)
圆心角定理是圆中证弧等、弦等、弦心距等、圆心角等的常用方法.
学习至此,请使用本课时对应训练部分.(10分钟)
4