- 263.50 KB
- 2021-11-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
北京市朝阳区九年级综合练习(二)
数学试卷评分标准及参考答案
2011.6
一、选择题(本题共32分,每小题4分)
1.A 2.C 3.B 4.B 5.D 6.C 7.B 8.A
二、填空题(本题共16分,每小题4分)
9.x≥2 10.12 11.k≤1且k≠0 12.4π,(16π-32)
三、解答题(本题共30分,每小题5分)
13.解:原式= ……………………………………………… 4分
=. ……………………………………………………………… 5分
14.解:由,解得. ………………………………………………………… 1分
由,解得. ……………………………………………… 3分
∴解集为.……………………………………………………………… 4分
不等式组的解集在数轴上表示如下:
………………………………………………………… 5分
15.解:. ………………………………………………………… 1分
去分母,得. ………………………………………2分
去括号,得. ………………………………………………3分
解得. ………………………………………………………………………4分
经检验,是原方程的解. ………………………………………………… 5分
∴ 原方程的解是.
16.解:(1)令,则,解得. ∴A(-6,0). …………… 1分
令,则. ∴B(0,3). ……………………………………2分
(2)∵点P在直线上,且横坐标为-2,
∴P(-2,2). ……………………………………………………………4分
∴过点P的反比例函数图象的解析式为. …………………… 5分
17.(1)证明:连接AH,
依题意,正方形ABCD与正方形AEFG全等,
∴AB=AG,∠B =∠G=90°.…………… 1分
在Rt△ABH和Rt△AGH中,
AH=AH,
AB=AG,
∴Rt△ABH≌Rt△AGH. ……………… 2分
∴BH=GH. ……………………………… 3分
(2)解:∵∠1=30°,△ABH≌△AGH,
∴∠2 =∠3=30°. ……………………… 4分
在Rt△ABH中,∵∠2 =30°,AB=6,
∴BH=. ……………………………………………………………………… 5分
18.解:设AB长为x米,则BC长为(24-2x)米. ……………………………………… 1分
依题意,得 . .…………………………………………… 2分
整理,得 .
解方程,得 . ……………………………………………… 3分
所以当时,;
当时,(不符合题意,舍去). ………………… 4分
答:AB的长为10米. ……………………………………………………………… 5分
四、解答题(本题共20分,每小题5分)
19.解:(1)连接OA,
∵AD为⊙O切线, ∴ ∠OAD=90°.…… 1分
∵sinD=, ∴∠D=30°.……………… 2分
∴∠AOC=60°.
∴∠ABC=∠AOC=30°. ……………… 3分
(2)在Rt△OAD中,∠D=30°,OD=20.
∴OA=OD=10.
∵OE⊥AC,OA=OC,
∴∠AOE=30°,AE=OA=5.
∴AC=2AE=10.
∵BC是⊙O的直径, ∴∠BAC=90°.
在Rt△BAC中,AB=, ………………………… 4分
在Rt△ABE中,BE=. ………………………… 5分
20.解:(1)200; ………………………………………………………………………… 1分
(2)108°,25%; …………………………………………………………………3分
(3)图略(羽毛球30人); …………………………………………………… 4分
(4)1150. …………………………………………………………………………5分
21.解:由题意可知:∠CAB=30°,∠ABC=105°,AB=20. …………………………1分
∴∠C=45°. …………………………2分
过点B作BD⊥AC于点D,
在Rt△ABD中,∠CAB=30°,
∴BD=AB=10. ……………………3分
在Rt△BDC中,∠C=45°,
∴BC=. ………………………………………………………4分
∴BC≈14(海里). ……………………………………………………………5分
答:船与小岛的距离BC约为14海里.
22.(1)相等; ………………………………………………………………………………1分
(2); ………………………………………………………………………………3分
(3). ……………………………………………………………………………5分
五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)
23.(1)证明:∵△ABC和△ADE均为等边三角形,
∴AB=AC,AE=AD,∠BAC=∠EAD=60°.
∵∠BAE=∠BAC-∠EAC,∠DAC=∠EAD-∠EAC,
∴∠BAE=∠DAC.
∴△ABE≌△ACD.
∴CD=BE. ……………………………………………………………………1分
∠ABE=∠ACD.
∵M、N分别是BE、CD的中点,
即BM=BE,CN=CD.
∴BM= CN.
又AB=AC,
∴△ABM≌△ACN.
∴AM=AN,∠MAB=∠NAC. ………………………………………………2分
∴∠NAM=∠NAC+∠CAM=∠MAB+∠CAM=∠CAB=60°.
∴△AMN是等边三角形. …………………………………………………3分
(2)解:作EF⊥AB于点F,
在Rt△AEF中,
∵∠EAB=30°,AE=AD=,
∴EF=. …………………………………………………………………4分
∵M是BE中点,
作MH⊥AB于点H,
∴MH∥EF,MH=EF=. ……………………………………………5分
取AB中点P,连接MP,则MP∥AE,MP=AE.
∴∠MPH=30°,MP=.
∴在Rt△MPH中,PH=.
∴AH=AP+PH=. .………………………………………………………6分
在Rt△AMH中,AM=. .…………………………7分
24.解:(1). …………………………………………………………………………1分
(2)12. …………………………………………………………………………2分
(3)如,作AH⊥BC于点H,在Rt△ABH中,∵∠B=30°,AB=10,BC=12,
∴AH=5, S△ABC=.
当点A’落在BC上时,点D是AB的中点,即x=5.
故分以下两种情况讨论:
① 当0<≤5时,如,∵DE∥BC,∴△ADE∽△ABC.
∴.
∴.
即. ………………………………………………………………3分
∴ 当=5时,. ………………………………………4分
② 当5<<10时,如,设DA’、EA’分别交BC于M、N.
由折叠知,△A’DE≌△ADE,∴DA’=DA=x,∠1=∠2.
∵DE∥BC,∴∠1=∠B,∠2=∠3.
∴∠B=∠3.
∴DM=DB=10-x.
∴MA’=x-(10-x)=2x-10.
由①同理可得.
又△MA’N∽△DA’E,
∴ .
∴.
∴
…………………………………………………5分
.
∵ 二次项系数,且当时,满足5<<10,
∴ . ……………………………………………………………6分
综上所述,当时,值最大,最大值是10. …………………7分
25. 解:(1)把A(5,0)代入,得. …………1分
∵bc=0,∴b=0或c=0.
当b=0时,代入中,得,舍去.
当c=0时,代入中,得,符合题意.
∴该抛物线的解析式为 …………………………………3分
(2)①若OA为边,则PM∥OA.
设M(m,2m), ∵OA=5, ∴P(m+5,2m)或P(m-5,2m).
当P(m+5,2m)时, ∵P点在抛物线上,
∴, 解得.
∴P(12,14). ………………………………………………………………5分
当P(m-5,2m)时, ∵P点在抛物线上,
∴, 解得.
∴P(-3,4)或P(20,50). ……………………………………………………7分
②若OA为对角线,则PM为另一条对角线.
∵OA中点为(,0),
设M(m,2m), ∴P(5-m,-2m). ∵P点在抛物线上,
∴, 解得.
∴P(12,14). ………………………………………………………………8分
综上,符合条件的P点共有3个,它们分别是P1(12,14) 、P2(-3,4)、P3(20,50).
(说明:以上答案仅供参考,若有不同解法,只要过程和解法都正确可相应给分)