- 860.00 KB
- 2021-11-20 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第七、八单元达标检测卷
一、仔细推敲,选一选。(将正确答案的序号填在括号里) (每小题3分,共24分)
1.条形统计图可以清楚地表示( )。
A.数量的变化趋势 B.数量的多少
C.数量的增加 D.数量的减少
2.下面是某家电商场2019年第一季度普通彩电和液晶彩电的月销 售量统计图,根据统计图,如果该商场要进第二季度的货时,应该多进哪种彩电?( )
A.普通彩电 B.液晶彩电 C.两种一样多 D.无法确定
3.小明给客人沏茶,接水要1分钟,烧水要6分钟,洗茶杯要2分钟,拿茶叶要1分钟,沏茶要1分钟。要使客人尽快喝到茶,最少需要( )分钟。
A.7 B.8 C.9 D.10
4.一种锅每次最多只能烙2张饼,两面都要烙,每面要3分钟,烙5张饼至少要( )分钟。
A.6 B.10 C.15 D.30
5.小丽用洗衣机洗衣服要用20分钟,扫地要用4分钟,浇花要用10分钟,晾衣服要用3分钟。经过合理安排,小丽做完这些事至少要用( )分钟。
A.20 B.23 C.24 D .37
6.小东烤鱼,鱼的两面都要烤,每次最多烤2条鱼,烤一面需要4分钟,烤7条鱼至少需要( )分钟。
A.14 B.21 C.28 D.32
7.厦门鼓浪屿是福建省著名景点,是国家5A级旅游景区。想要直观地反映该景区2019年各月份旅游人数的多少,可以采用( )。
A.统计表 B.条形统计图 C.两种都可以 D.无法确定
8.小动物们参加森林晚会彩排需要的时间分别如下:
要使动物们等候的时间最少,安排三只动物彩排的顺序为( )。
A.兔子、羊、牛 B.牛、羊、兔子
C.羊、牛、兔子 D.兔子、牛、羊
二、认真审题,填一填。(每空1分,共27分)
1.条形统计图中用3格代表15人,则每格代表( )人,照这样计算,6格代表( )人,要代表90人需要画( )格。
2.下面是实验小学四年级各班的足球小组比赛得分情况统计表,根据统计表回答问题。
(1)根据统计表画条形图时,条形图中1格代表( )分比较合适。
(2)四年级( )班的得分最高;( )班的得分最低,只得了( )分。
(3)四年级四个班在这次比赛中总共得了( )分。
(4)二班和三班的得分总数是一班的( )倍,是四班的( )倍。
(5)平均每个班得了( )分。
3.下面是五种动物的最高时速统计图。
(1)狮子的最高时速是( )。
(2)比狮子跑得快的动物有( ),比狮子跑得慢的动物有( )。
(3)如果它们进行赛跑,( )可能跑第一,( )可能跑最后。
(4)狮子和猎豹同时同向跑60分钟,相差( )千米。
4.小华手中有1、4、7三张牌,想胜过小军手中的2、5、8三张牌,则必须让( )先出,当小军出8时小华出( );当小军出5时小华出( );当小军出2时小华出( )。这样三局两胜,小华才能获胜。
5.看统计图填一填。
(1)条形统计图中纵轴每格代表( )个人。
(2)参加( )小组的人数最多,参加( )小组的人数最少。
(3)参加社团活动小组的共有( )人。
(4)参加街舞小组的人数比跳绳小组的人数多( )人。
(5)参加围棋小组和跳绳小组的总人数比篮球小组( )人。
三、联系实际,用一用(共49分)
1.育英小学四年级同学参加课外小组的人数如下表。
(1)根据上表中的数据完成下面的条形图。(10分)
(2)参加( )课外小组的人数最多,参加( )课外小组的女生比男生少。(2分)
(3)参加唱歌小组的一共有多少人?(3分)
(4)对比两个统计图,你发现了哪些信息?(请至少写出一条)(2分)
2.下面是四年级同学们春季植树的情况统计表。
(1)选择一种树木把各班的植树情况在下图中表示出来。(8分)
(2)每格代表( )棵。( )班植的( )树最多。(2分)
(3)对多植树,保护我们的绿色家园你有什么感想?(2分)
3.厦门园林植物园,俗称“万石植物园”。第二实验小学3位老师带50名学生去参观该植物园。[团体票:10人以上(含10人)]怎样买票合算?(8分)
4.小明每天早晨起床后做这些事情。 (12分)
怎样安排才能最节省时间?请用方框图表示出来。
答案
一、1.B 2.B 3.B 4.C 5.B 6.C 7.B 8.A
二、1.5 30 18
2.(1) 1 (2) 二 一 4 (3)28
(4)4 2 (5)7
3.(1)70千米/时
(2)猎豹、马 猫、大象
(3)猎豹 大象 (4) 43
4.小军 1 7 4
5.(1)10 (2)篮球 跳绳 (3) 150 (4) 20 (5)少10
三、1.(1)
(2)舞蹈 乒乓球
(3)7+24=31(人)
答:参加唱歌小组的一共有31人。
(4)略
2.略
3.方案一 分别购成人票和学生票:
3×40+50×20=1120(元)
方案二 统一购团体票:
24×(50+3)=1272(元)
方案三 7名学生和3位老师购团体票,剩下的学生购学生票:
(3+7)×24+(50-7)×20=1100(元)
1100元<1120元<1272元
所以方案三最合算。
答:7名学生和3位老师购团体票,剩下的学生购学生票最合算。
4.6+3+2+1+8=20(分钟)
图略
课题
优化(2):烙饼问题
课型
新授课
设计说明
这是一节渗透统筹优化思想的数学课,通过简单的优化问题渗透简单的优化思想。本节课立足于培养学生良好的思维能力,从学生已有的生活经验和知识基础出发,创设问题情境,让学生借助学具操作,经历探索烙饼过程中的数学知识,逐步掌握解决问题的最佳方法,初步体会数学方法的应用价值。
1.让学生进行实践操作。
由于本节课所要体现的数学思想方法比较抽象,因此在教学过程中为学生提供了独立思考、动手操作、合作探究、展示交流的时间和空间。通过合作、动手操作、想一想、说一说、摆一摆等过程,让学生能够真正动眼、动手、动脑参与到获取知识的过程中。
2.注重自主探索、合作交流的学习方式。
教学过程中要立足学生的“数学现实”,先激活学生已有的知识和经验,再让学生通过观察、操作、归纳、猜想、交流等活动来激发学生的学习兴趣,发展学生的思维能力。特别是先让学生独立思考、动手操作,给予他们足够的时间和空间,然后小组讨论,最后全班交流,这样学生既有了独立思考的时间,又通过交流汲取了集体的智慧,在交流过程中,教师与学生、学生与学生的思维相互碰撞,重现课堂开放、生动的本来面目。
学习目标
1.通过生活中的简单事例,使学生初步体会到优化思想在解决问题中的应用。
2.使学生认识到解决问题中的策略的多样性,初步形成寻找解决问题最优化方案的意识。
3.让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决问题的实际能力。
4.使学生能积极地参与数学学习活动,体会到学习数学的乐趣。
学习重点
体会优化思想。
学习难点
探究解决问题的最优方案。
学前准备
教具准备:PPT课件
学具准备:圆形纸片
课时安排
1课时
教学环节
导 案
学 案
达标检测
一、创设情境,引入新课。(5分钟)
1.同学们,在日常生活中我们经常能碰到一些数学问题。例如:煮熟一个鸡蛋要用5分钟时间,煮熟5个鸡蛋要用多长时间?学生讨论、交流。
2.师小结:当5个鸡蛋一起煮时,既可以节约时间,又能节约能源。看来,煮鸡蛋是要讲究方法的!其实很多事情都要讲究策略,今天我们就用数学的眼光来研究烙饼的策略。(板书课题)
1.学生讨论、交流。汇报煮鸡蛋的策略。
2.学生带着好奇心与老师共同进入新知的探讨。
1.猜一猜。
1个人吃1个苹果要2分钟,5个人吃5个苹果一共要几分钟?
答案:2分钟。
2.填一填。
(1)1张饼有(
)面,如果烙熟一面需要3分钟,烙熟一张饼需要( )分钟。
(2)煮熟1个鸡蛋需要10分钟,一只锅可以煮50个鸡蛋,那么要煮熟30个鸡蛋最少需要( )分钟。
答案:(1)2 6(2)10
3.选一选。
小楠在烤炉上烤面包,一次能烤10片,每片都要烤两面,每面都需要1分钟才能烤好,烤好20片面包需要( )分钟。
A.2 B.4 C.10
答案:B
4.想一想。
用一台小型烤箱烤蛋糕(每次最多只能烤2个),已知烤熟1个需要2分钟(两面各需要1分钟),烤熟5个蛋糕最少需要多少分钟?
二、自主探索,探究烙法。
(24分钟)
1.解读信息,理解烙饼规则。
(1)课件呈现主题图, 引导学生观察发现关键的数学信息。
(2)师:烙1张饼最少需要6分钟,烙2张饼应该需要12分钟才对,现在却只需要6分钟,这是怎么回事?
2.探究“交替烙”。
(1)怎样才能让大家最快吃上饼?请你借助硬币、课本或写有正、反的橡皮、纸片等摆一摆,试一试。
(2)交流反馈,全班展示。
方法一:先烙1张,再烙1张,6分钟+6分钟=12分钟。
方法二:
(3)请同学们用方法二烙一烙、算一算,验证一下这样烙是不是需要9分钟。
(4)请同学们比较两种不同的烙法,为什么方法二省时间呢?
(5)小结:方法二竟然有这么多的数学奥妙,我们称之为“交替烙”。课件演示交替烙饼法。
3.探究“分组烙”。
(1)4张饼怎么烙?
(2)介绍“分组烙”方法。
1.(1)学生发现关键信息:要烙6张饼,每次只能烙两张饼,两面都要烙,每面要3分钟。
(2)学生交流明确:因为一个锅可以同时烙2张饼。
2.(1)学生借助学具摆一摆、试一试。
(2)同学们展示自己的烙法。
(3)同学们用学具验证。
(4)同学们交流发现:方法二每次烙2张饼,没浪费锅的空间,所以省时。
(5)学生认真倾听、观察。头脑中再现“交替烙饼法”。
3.(1)学生自由交流、讨论。
(3)6张饼、8张饼、10张饼……怎样烙呢?最少需要多长时间?学生汇报并交流。
(4)小结:饼的张数是双数时,2张2张的烙最省时间,也就是分组烙最省时间。
4.探究“分组烙+交替烙”法。
(1)假如烙5张饼,怎样烙最省时间?谁来说一说方法。
(2)介绍“分组烙+交替烙”法。
(3)现在你会解决了吗?烙7张饼、9张饼、11张饼,怎么烙最省时间?
(4)反馈:你发现什么情况下用分组烙最省时间,什么情况下用两种方法结合最省时间?
(5)仔细观察烙饼的张数和烙饼的总时间,你又能发现什么?
(2)认真倾听,了解“分组烙”。
(3)学生独立完成后汇报,集体订正。
(4)在教师的小结中明确答案。
4.(1)学生自由交流想法。
(2)认真倾听,了解“分组烙+交替烙”法。
(3)学生独立完成,老师巡视指导。
(4)小组交流后明确:单数张:先2张2张分组烙,再交替烙最后3张;双数张:2张2张地分组烙。
(5)交流后明确:烙饼的最短时间=烙饼的张数×烙一面用的时间(一张除外)
分析:用方法二可用三分钟烤熟三个蛋糕,另外两个蛋糕可用两分钟烤熟。
答案:5分钟。
三、巩固练习。(5分钟)
完成教材第105页“做一做”第2题。
学生独立完成,全班展示,集体订正。
教学过程中老师的疑问:
1.通过今天的学习,你有什么收获?
2.布置作业。
1.交流自己本节课的收获。
2.独立完成作业。
四、课堂总结,布置作业。(6分钟)
五、教学板书
六、教学反思
“烙饼”是一节渗透统筹优化思想的数学课,通过简单的优化问题渗透简单的优化思想。在教学设计和教学过程中,我以“烙饼”为主题,以数学思想方法的学习为主线,围绕怎样烙饼才能尽快吃上饼展开教学,设计了烙1张、2张、3张、4张……单张,双张饼的探究过程。以烙3张饼作为教学突破点,形成从多种方案中寻找最佳方案的意识,为学生提供独立思考、动手操作、合作探究、展示交流的时间和空间。学生利用手中学具代替饼,经历了从提出数学问题——解决数学问题——发现数学规律——建构数学模型的过程,整节课根据不同的教学环节渗透了不同的教学理念。
教师点评和总结:
名人合理利用时间的故事
鲁迅的成功有一个重要的秘诀,就是珍惜时间。鲁迅12岁在绍兴城读私塾的时候,父亲正患着重病,两个弟弟年纪尚幼,鲁迅不仅经常上当铺,跑药店,还得帮助母亲做家务。为了不影响学业,他必须做好精确的时间安排。
此后,鲁迅几乎每天都在挤时间。他说过:“时间,就像海绵里的水,只要你挤,总是有的。”
鲁迅读书的兴趣十分广泛,不仅喜欢写作,而且对于民间艺术,特别是传说、绘画,也有深切爱好。正因为他广泛涉猎,多方面学习,所以时间对他来说,实在是非常重要。他一生多病,工作条件和生活环境都不好,但他每天都要工作到深夜才肯罢休。
在鲁迅的眼中,时间就如同生命。“美国人说,时间就是金钱。但我想,时间就是性命。倘若无端地空耗别人的时间,其实是无异于谋财害命的。”因此,鲁迅最讨厌那些“成天东家跑跑,西家坐坐,说长道短”的人,在他忙于工作的时候,如果有人来找他聊天或闲扯,即使是很要好的朋友,他也会毫不客气地对人家说:“唉,你又来了,就没有别的事好做吗?”
沏茶
【教学内容】 人教版四年级上册P104例1,做一做及相应练习
【教学目标】
1、使学生通过简单的事例,认识到解决问题策略的多样性,学会选择合理、快捷的方法解决问题。
2、 让学生初步体会到优化思想在解决实际问题中的应用,形成寻找最优方案的意识。
3、使学生逐渐养成合理安排时间的良好习惯,提高解决实际问题的能力。
【教学重点】体会优化的思想。
【教学难点】学会选择合理、快捷的方法解决问题,形成寻找最优方案的意识。 【教学具准备】多媒体课件、沏茶工序卡片。
【教学过程】
一、课前活动,引出话题。
1、师生谈话。你在家里帮父母做家务吗?你会做什么呢?你能用“一边(干什么)一边(干什么)”的句式来说一句话吗?。
2、刚才造句中说的几件事都是可以同时做的,不仅在文字里有这样的表述,在数学领域也有关于这方面的知识。我们今天就来学习数学广角(出示课题)——合理安排时间。 [设计意图:简单而平实的导入把课堂和生活融合在一起,让学生体会到我们要学的,正是我们生活中要用到的,这样的学有所用,才会使学生更有积极性。与此同时,这样的设计又是语文和数学学科的整合,“一边……一边……”正说明可以同时做不同的事,这两件事之间即有内部联系又有不同的方式,而这其间的合理安排,正是这节课里要学习的统筹方法。]
二、创设情境,探究方法。(学习例1)
1、提出问题
师:星期天的上午,小明家的门铃响了。原来是李阿姨到小明家做客。(出示例1画面)从图上你能得到哪些信息? 想一想:你平时沏茶的时候都需要做哪些事?
师:我们来看看小明沏茶都需要做哪些事?分别需要多长时间?(出示各项工序图片)谁能说给大家听?
师:小明要做这么多事,请你帮小明想一想,他应该先做什么,再做什么?
师:(在学生回答后提问)小明先烧水行吗?看来,合理安排时,要考虑好各项事情的先后顺序。(板书:先后顺序)
师:那什么事情可以同时做呢?
2、 学生自主设计方案。
师:同学们都挺善于开动脑筋的。那小明要怎样安排这些事情才能让客人尽快喝上茶呢?请同学们以小组为单位,帮小明设计一种能尽快让客人喝上茶的方案。现在,请拿出你们准备好的工序图片摆一摆,然后算一算,你们设计的方案需要多长时间?(生分小组合作学习,师参与学生的小组活动)
3.展示学生不同的方案。
师:谁来给大家说一说,你们是怎样安排的?(请学生上台摆工序图片,师引导学生叙述设计的过程:你们先干什么?一共需要多少分钟?)
师;还有谁有更快的方法?(请另一组学生上台摆工序图片)
① 水壶→接水→烧水→ 沏茶(11分钟)
洗茶杯
找茶叶
②洗水壶→接水→烧水→找茶叶→沏茶(12分钟)
洗茶杯
③洗水壶→接水→烧水→洗茶杯→找茶叶→ 沏茶(14分钟)
3、 学生比较,选择最合理的安排方法。
师:比较上面的方案,你认为哪一种能尽快让客人喝上茶?为什么? 生:第一种,因为用的时间少。
师:在哪节省了时间?
生:烧水的同时洗茶杯。找茶叶,同时做了3件事,所以更节省时间。 师:说得真好!看来,合理安排时,不仅要考虑哪些事应该先做,而且还要考虑能同时做的事情要安排同时进行,这样就能节省时间。(板书:同时进行)那么,像这种能让客人最快喝上茶的方案,我们把它称为“最优方案”。我们来看看电脑老师为我们呈现的这种最优方案的流程图。(出示流程图)
5、 小结:
上面①②这两种方案都是通过同时做几件事才节省时间的。②的方法是同时做了两件事,而①的方法是同时做了三件事,所以最节省时间。看来,我们在做一些事情的时候,能同时做的事情越多所用的时间就越短。在生活中,不仅仅是沏茶,还有很多事情都可以用同样的理念去解决。请和老师一起去看看一些生活小问题吧。 [设计意图:本着从学生的生活经验和知识基础出发的原则,我首先创设了生活中熟知的情境----为客人沏茶,这样浓郁的生活气息,很容易吸引学生的注意力,激发学生的学习兴趣。接着让学生先想一想,自己沏茶的时候需要做什么事,再看小明需要做哪些事,这样设计能巧妙地拉近学生和小明之间的距离,使问题层层递进,使教学过程衔接自然。通过观察知道,小明做的事很多,请同学们帮助小明想一想,该先做什么,再做什么。有了这样的基础之后,才让同学们小组合作交流,动手操作,摆一摆,算一算,这样就为设计出最优化的方案提供了素材,让学生自主设计方案,体现了学生才真正是学习的主人。最后通过学生的汇报,共同总结出最优化方案。让学生真正地在亲自动手实践的过程中,设计出了合理安排时间的最优化方案。]
三、 实践应用(我是小小设计家)
1、 (出示肯德基餐厅画面)师述:星期天上午,聪聪和妹妹来到肯德基餐厅,准备美餐一顿。呵,店里的人可真多呀!妹妹说:“我们赶快去排队买食品吧!”聪聪摇摇头说:“不,我们应该先去寻找座位更节省时间!”同学们,你们同意谁的方案?你有什么好的建议能让他们早点吃上食品吗?和同桌一起商量商量吧。(生讨论后回答)
2、师:同学们帮聪聪和妹妹解决了难题,他们非常感谢你们。可我的邻居小红也遇到了一个问题,你们愿不愿意帮帮她呀?好,让我们一起去看看。(出示吃药画面)
师:你能从图上得到什么信息?吃药的过程包括几件事?分别需要多长的时间?小红又遇到了什么难题呢?请你和同桌讨论一下,应怎样安排事情,才能让小红吃完药后能尽快休息?(学生汇报,老师出示最佳流程图) [设计意图:数学源于生活,还要服务于生活。基于这样的理念,我又设计了“我是设计小行家”的生活小问题。让学生能运用新掌握的设计理念来设计最优化的方案,解决生活中的实际问题。]
3、 师:通过刚才的设计,我们对设计优化方案、合理安排事情有了更进一步的了解。下面,对于他们的安排,请你说说看法。(出示课件:
(1) 、为了提高学习质量,强强在乘车时认真看书。
(2) 、为了节省时间,红红边吃饭边看电视动画片《蜘蛛侠》。) (生:乘车看书时,车子在行驶中会使车内的光线忽明忽暗,车子在行驶中摇晃,会使眼睛与书的距离时近时远,所以会影响视力,损害眼睛健康;看电视,是大脑在进行活动,大脑活动需要有大量的血液供应,而人在吃饭时,也需要有大量的血液和消化液帮助胃肠消化食物,两者相互争着血液的供应,结果两者都得不到充分的血液。因此,既防碍了食物消化,影响了健康,也看不好电视。所以说这样的安排都是不科学的。) 师小结:通过分析上面的事情,我们明白了,合理安排事情,不但要考虑节省时间,还要考虑人身的健康和安全,更要讲究科学。 [设计意图:对合理安排事情有了初步认识后,再来对这部分内容进行提升。让学生更加深刻的认识科学并合理安排事情的真谛。]
4、 师:同学们,在我们的身边还有许许多多需要合理安排的事情,聪明的人总是把事情进行最优的安排来提高效率。请想一想,生活中还有哪些事情可以通过合理安排来提高效率的?(生说) [设计意图:请学生们说一说生活中例子,让同学们再一次的感悟生活与数学的密不可分的关系。]
四、课堂总结。
1、 师:今天我们不仅帮助小明和小红解决了问题,同时也有了自己的收获。谁能说说自己的收获和体会呢?
2、师:这节课我们学习了合理安排事情,在生活中可以提高效率,节省时间。伟大的文学家鲁迅有这样的一句话:(课件出示)“时间,每天得到的都是24小时,可是,一天的时间给勤勉的人带来智慧和力量,给懒散的人只能留下一片悔恨。”
把这句话送给大家,希望大家能够运用今天所学的知识合理安排自己的学习和生活,做一个珍惜时间的人。 [设计意图:在设计“课堂总结”这一环节中,首先让学生畅谈了自己的收获和体会,再一次体现学生是学习的主体。然后再用名人名言结束了本节课,能给学生留下深刻的铬印,给学生以启迪。]
五、课后作业:设计一张时间表,合理地安排星期天的学习和生活时间。
六、板书设计: 数学 广 角 ——合理安排时间
①洗水壶→ 接水→ 烧水 →沏茶 (11分钟)
洗茶杯
找茶叶
②洗水壶→ 接水→ 烧水→找茶叶→沏(12分钟)
洗茶杯
③洗水壶→接水→烧水→洗茶杯→找茶叶→ 沏茶(14分钟)
沏茶问题
课题
优化(1):沏茶问题
课型
新授课
设计说明
这节课主要研究解决问题策略的多样性,形成从多种方案中寻求最优方案的意识。《数学课程标准》指出当学生遇到实际问题时能主动运用数学的思想方法解决实际问题。在日常生活中遇到问题时学生能很容易地找到多种解决问题的策略。那么这节课就是要让学生理解运筹的思想,形成从多种方案中寻求最优方案的意识,提高学生解决问题的能力。
1.引而不替,发挥学生的主体作用。
在教学过程中给学生提供充分的参与数学活动的机会,让学生成为学习的主人。比如在教学中让学生自己探索做家务的顺序。让学生在组内进行激烈的讨论,在操作中学会思考,在思考中引导操作,各组形成自己的方法,然后通过比较分析选出最优方案,让学生经历从解决问题的多种方案中寻找最优方案的过程。
2.根据学生已有的生活经验,联系实际解决问题。
在教学时,引导学生想一想自己在生活中是怎样做家务的,明确应该先做什么,后做什么,哪些事情可以同时做,然后再让学生探讨最佳方案,使学生的学习活动能够有的放矢,避免盲目性,更有利于学生总结经验和解决问题。
学习目标
1.学生在解决合理安排沏茶的工序问题中,学会用流程图的方式表示解决问题的方案,认识到策略的多样性,形成寻找解决问题最优方案的意识。
2.初步培养学生的应用意识和解决实际问题的能力。
3.使学生逐渐养成合理安排时间的良好习惯。
学习重点
解决沏茶这一类问题的思考方法和用流程图表示解决问题的方案。
学习难点
经历寻找解决问题的最优方案的过程,提高解决实际问题的能力。
学前准备
教具准备:PPT课件
学具准备:沏茶的六道工序图片
课时安排
1课时
教学环节
导 案
学 案
达标检测
一、课前活动,引出话题。(5分钟)
1.(1)老师想考考大家的语文学得怎么样?谁能用“一边(干什么)一边(干什么)”说一句话?
(2)师:刚才同学们说的一边干什么,一边干什么都是同时做几件事,不仅在语文中有这样的表述,在今天的数学课里也有关于这方面的知识。
2.引题:在生活中,合理安排时间,把能同时做的事情同时做了,就会节省时间。今天就学习如何合理安排时间。(板书课题)
1.(1)学生用“一边……一边”造句。
(2)学生带着好奇心认真倾听、思考。
2.明确本节课的学习任务。
1.猜一猜。
小红:炒完菜之后焖饭。
小芳:焖饭的同时炒菜。
谁先吃上饭?
答案:小芳。
2.填一填。
(1)下面是妈妈做早饭的过程及时间:淘米(2分钟)、煎鸡蛋(5分钟)、倒牛奶(1分钟)、熬粥(20分钟)、拌咸菜(5分钟)。其中( )的同时可以( )、( )、( ),( )这件事必须先做,妈妈做完这些家务最少用( )分钟。
二、创设情境,探究方法。
(23分钟)
1.师:星期天上午,李阿姨来小明家做客(课件:门铃响了)。妈妈对小明说:“小明,快去给李阿姨沏茶。”小明是一个爱思考的孩子,他在想:怎么样才能让客人尽快喝上茶?
(1)师:根据你平时沏茶的经验,想一想,小明要完成沏茶这个任务需要做哪些事?
(2)师:一共有几道工序?(6道)(课件显示6道工序)那么,请同学们想一想:这六道工序,我们就按照现在列出来的顺序做可以吗?
(3)明确哪些家务可以同时做,组织学生汇报。
2.引导学生用流程图把做家务的方案表示出来。
3.学生展示不同的设计方案,
看看哪种方案最合理。
4.小结:当有许多事情要做时,要先动脑筋想一想,能同时做的事情尽量同时做,这样才能节省时间。
1.认真观察思考:怎么样才能让客人尽快喝上茶?
(1)请学生回答,师归纳:洗水壶、接水、烧水、找茶叶、找茶杯……
(2)学生分小组讨论,教师巡回了解情况。
(3)学生汇报结果。
2.学习用流程图表示出做家务的过程,并用学具卡摆一摆。
3.请学生汇报,让学生把方案板贴到黑板上,明确哪种方案最合理。
4.师生共同总结合理利用时间的方法。
(2)妈妈上班,朵朵只能自己做饭吃。淘米(3分钟),洗锅(1分钟),电饭锅煮饭(20分钟),把妈妈做好的几个菜用微波炉热一下(8分钟),冲一碗汤(3分钟),她最快( )分钟就可以吃饭了。
分析:在煮饭的同时,可以热菜、冲一碗汤。
答案:(1)熬粥煎鸡蛋倒牛奶拌咸菜淘米22(2)24
3.算一算。
小玉星期天在家做了以下几件事:用洗衣机洗衣服(30分钟)、擦窗台(6分钟)、扫地(3分钟)、拖地(15分钟)、晾衣服(8分钟)。做完这些事最少需要多少分钟?
答案:38分钟
三、巩固练习。
(7分钟)
完成教材第105页“做一做”第1题。
学生独立完成,全班展示。集体订正。
教学过程中老师的疑问:
四、课堂总结,布置作业。(5分钟)
1.通过今天的学习,你有什么收获?
2.布置作业。
1.交流自己本节课的收获。
2.独立完成作业。
五、教学板书
六、教学反思
由于学生对沏茶这一生活现象比较熟悉,又比较常见,于是在教学中针对教材内容,精心设计了为客人沏茶的生活情境。当画面上呈现妈妈让小明帮妈妈烧壶水给李阿姨沏杯茶这一数学信息时,我没有急于想去解决如何让李阿姨尽快喝上茶,而是让学生想想平时是怎么做的?然后让同学们“帮小明想一想,怎样才能让客人尽快喝上茶”,放手让学生思考设计沏茶的方案,各小组热烈讨论、认真计算,形成共同的方案,让学生亲历寻找解决问题的方案和寻找最优方案的全过程,从中明白节省时间的道理,理解最优方案。学生始终能处于主动思考解决问题的最佳状态,有效地促使学生积极参与学习活动。
教师点评和总结:
田忌赛马
齐国的大将田忌很喜欢赛马,有一回,他和齐威王约定,要进行一场比赛。 他们商量好,把各自的马分成上,中,下三等。比赛的时候,要上马对上马,中马对中马,下马对下马。由于齐威王每个等级的马都比田忌的马强得多,所以比赛了几次,田忌都 失败了。 田忌觉得很扫兴,比赛还没有结束,就垂头丧气地离开赛马场,这时,田忌抬头一看, 人群中有个人,原来是自己的好朋友孙膑。孙膑招呼田忌过来,拍着他的肩膀说: “我刚才看了赛马,威王的马比你的马快不了多少呀。” 孙膑还没有说完,田忌瞪了他一眼: “想不到你也来挖苦我!” 孙膑说:“我不是挖苦你,我是说你再同他赛一次,我有办法准能让你赢了他。” 田忌疑惑地看着孙膑: “你是说另换一匹马来?” 孙膑摇摇头说: “连一匹马也不需要更换。” 田忌毫无信心地说: “那还不是照样得输!”孙膑胸有成竹地说: “你就按照我的安排办事吧。” 齐威王屡战屡胜,正在得意洋洋地夸耀自己马匹的时候,看见田忌陪着孙膑迎面走来, 便站起来讥讽地说: “怎么,莫非你还不服气?” 田忌说:“当然不服气,咱们再赛一次!”说着,“哗啦”一声,把一大堆银钱倒在桌子上,作为他下的赌钱。 齐威王一看,心里暗暗好笑,于是吩咐手下,把前几次赢得的银钱全部抬来,另外又加了一千两黄金,也放在桌子上。齐威王轻蔑地说: “那就开始吧!” 一声锣响,比赛开始了。 孙膑先以下等马对齐威王的上等马,第一局输了。齐威王站起来说: “想不到赫赫有名的孙膑先生,竟然想出这样拙劣的对策。” 孙膑不去理他。接着进行第二场比赛。孙膑拿上等马对齐威王的中等马,获胜了一局。 齐威王有点心慌意乱了。 第三局比赛,孙膑拿中等马对齐威王的下等马,又战胜了一局。这下,齐威王目瞪口呆 了。 比赛的结果是三局两胜,当然是田忌赢了齐威王。 还是同样的马匹,由于调换一下比赛的出场顺序,就得到转败为胜的结果
统计学的起源
统计学是把数学的语言引入具体的科学领域,把具体的科学领域中要研究的问题抽象为数学问题的过程,它是收集、分析、列式和解释数据的一门艺术和科学。
17世纪出现的“政治算术学派”是统计学的起源。该学派的代表人物是威廉·配第(英国),他在1671~1676年间写成《政治算术》一书。在书中,他用数字来表述,用数字、重量和尺度来计量,并配以朴素的图表,这正是现代统计学广为采用的方法和内容。由于威廉·配第对于统计的形成有着巨大的贡献,因此马克思称他为“统计学的创始人”。
《怎样安排最省时间》
一、说教材
《怎样安排最省时间》是人教版小学数学四年级上册“数学广角”的内容。本单元主要是通过日常生活中的一些简单的事例,让学生尝试从优化的角度在解决问题的多种方案中寻找最优的方案,初步体会运筹思想在实际生活中的应用以及对策论方法在解决问题中的运用。《标准》指出:当学生面对实际问题时,能主动尝试着从数学的角度运用所学的知识和方法寻找解决问题的策略。在日常生活中,解决问题的方法学生很容易找到,而且寻找到解决问题的不同的策略,这里的关键是让学生理解优化的思想,形成从多种方案中寻找寻找最优方案的意识,提高学生解决问题的能力。
教学目标
教学重难点:探究解决问题的最优方案。
教学准备:多媒体课件
二、设计意图:
1、唤起学生已有经验,促使学生积极参与数学活动。以沏茶这一学生熟悉的生活实例引入,并让学生了解沏茶的工序,激起学生的已有经验,以有效地引导学生积极参与数学学习活动。
2、给学生提供从事数学活动的机会,让学生成为学习的主人。课堂中努力突出学生的主体地位。让学生参与观察、操作、讨论、交流等数学活动,在沏茶的最佳方案探求中体会数学方法及其应用价值,体会优化思想。
三、教法与学法
本课的教学,力求改变过去重知识、轻能力,重结果、轻过程,重教法、轻学法的状况,树立以“以学生发展为本”、“以学定教”、“教为学服务的思想”。根据学生的学情,我以自主探究为主线,以发展创新为宗旨,采用多媒体辅助教学。主要采用创设情境、引导探究、直观演示、组织讨论、应用拓展等教学方法,精心组织一系列有效的数学活动,让学生全面、全程、全心参与到每一个教学环节中,努力使课堂多一些自主、少一些包办;多一些民主、少一些权威,实现教学为学生服务的目的。
四、教学过程
依据新的教学理念及学生的认知特点,将本节课分为“情境导入一探究新知—巩固运用—拓展练习—课堂总结”五个环节。
﹙一﹚ 情境导入
儿童心理学家皮亚杰说过:“儿童是有个性的人,他们的活动受兴趣和需要的支配,一切有效活动必须以某种兴趣作为先决条件”。可见兴趣是最好的老师。基于这一理念,上课一开始我采用创设情景,引入课题:同学们,家里来了客人,你准备怎么做?沏茶。这样导入新课,尊重了学生的学习兴趣,又直接又富有情趣,还贴近学生的生活实际。
﹙二﹚ 探究新知
出示例1:优化理论(烧水问题:怎样安排各项事情,能尽快喝上茶。)
1、教材由一个生活情景来引出问题,并给出沏茶的各项工序及所需的时间。
2、这些工序有先后顺序,有些顺序可以改变,有些不能改变。如洗茶壶、接水、烧水、沏茶顺序不能改变。但有些事情是可以同时进行的,比如在烧水的时候可以洗茶杯、找茶叶等,能同时做的事情尽量同时做,这样才能节省时间。
这里选择了以小组为单位的合作学习方式,充分搭建平台,引领探究,培养学生合作、探究、交流的意识和能力。这样的教学不但活跃了学生的思维,而且使学生学的轻松、学的积极主动、真正成为学习的主体。
三, 巩固运用
这一环节中,我连续设计了两个相关训练题。一是引导学生用摆卡片的方式帮小红解决吃药的问题,二是要求学生仔细了解信息,合理安排时间,让客人尽快吃上午饭,然后,直接在练习纸上写出自己的设计方案。逐步加深学生对本节课重点内容的理解,并熟练的解决实际问题。
四、拓展运用
这一环节中,先激发学生的兴趣,接着出示问题,引导学生了解信息,直接表述解决问题的方案。
五、课堂总结
请学生谈谈这节课的收获和体会,出示鲁迅的名言,鼓励学生运用所学知识解决学习和生活中的问题。
第7-8单元达标检测卷
一、用心思考,正确填空。(每空2分,共30分)
1.统计表和( )都可以用来表示数量的多少,从( )中能更直观地看出各项数量的多少。
2.用条形图表示下面各表中的数据,1格各代表多少合适?
(1)第一小组同学最喜欢吃的水果情况如下表。
水果种类
苹果
香蕉
西瓜
梨
人数
5
3
6
2
1格代表( )人合适。
(2)同心超市上周牛奶销售情况如下表。
品牌
蒙牛
光明
旺仔
伊利
娃哈哈
数量/箱
30
25
50
35
40
1格代表( )箱合适。
(3)幸福小学各年级人数如下表。
年级
一年级
二年级
三年级
四年级
五年级
六年级
人数
400
500
700
800
1100
1400
1格代表( )人合适。
3.看图填空。
向阳小学四(2)班同学最喜欢的体育项目情况如下图。
(1)图中每格代表( )人,四(2)班一共有( )人。
(2)( )和( )比较受同学们欢迎。
4.煮熟1个鸡蛋需要9分钟,一个锅一次最多可以煮10个鸡蛋,那么煮熟40个鸡蛋至少需要( )分钟。
5.星期天,小强自己做饭吃。淘米要用1分钟,用电饭煲煮饭要用20分钟,把妈妈烧好的几个菜分别用微波炉热一热要用8分钟,做一碗汤要用3分钟。小强在( )的同时可以( ),小强最快( )分钟后就能吃饭了。
6.小明星艺术训练中心的红红、月月、青青三名同学要在徐老师和朱老师处测试舞蹈和钢琴,每项测试都要5分钟,她们最快( )分钟能全部完成测试。
7.一堆棋子共10颗,两人轮流从中拿走1颗或2颗,谁拿到最后1颗谁就获胜。如果让你先拿,第一次应该拿( )颗才能确保获胜。
二、反复比较,谨慎选择。(将正确答案的字母填在括号里)(每题4分,共28分)
1.( )能更直观地看出各项数量的多少。
A.条形图 B.统计表
C.圆圈图 D.画正字法
2.1名工人做1个电子配件要5分钟,照这样计算,8名工人同时做16个电子配件,需要( )分钟。
A.2 B.80
C.10 D.5
3.在平底锅里煎鸡蛋,每次最多煎2个,鸡蛋的两面都要煎,每面用3分钟,煎4个鸡蛋至少用( )分钟。
A.9 B.12
C.18 D.6
4.用平底锅烙饼,每次只能烙2张饼,两面都要烙,每面用4分钟,烙3张饼至少用( )分钟。
A.12 B.16
C.18 D.8
5.一种游戏,每局的时间都是5分钟,可以单人玩,也可以双人玩。甲、乙、丙三人每人都要玩2局,要用时最少,则应安排( )。
A.先让甲、乙两人玩2局,再让丙单独玩2局
B.先让甲、乙两人玩1局,再让乙、丙两人玩1局,最后让甲、丙两人玩1局
C.先让甲单独玩2局,再让乙、丙两人玩2局
D.先让甲、丙两人玩2局,再让乙单独玩2局
6.一位宾馆服务员接班以后要做以下几项工作:整理房间6分钟,给洗衣机加水并放衣服3分钟,自动洗涤20分钟,晾晒衣服3分钟,拖地3分钟,洗拖把1分钟。做完这些工作最少需要( )分钟。
A.23 B.26 C.32 D.36
7.一个小朋友唱一首歌要用5分钟,全班45个小朋友一起唱这首歌要用( )分钟。
A.225 B.45 C.50 D.5
三、联系生活,解决问题。(共42分)
1.新春超市一天卖出的饮料情况如下表。
饮料种类
绿茶
冰红茶
可乐
橙汁
数量/箱
16
20
12
15
(1)把上面的数据分别用图①和图②表示出来。(8分)
(2)图①中每格代表( )箱,图②中每格代表( )箱。(2分)
(3)这一天卖出的( )箱数最多,卖出的( )箱数最少。(2分)
(4)卖出橙汁的数量是( )箱,在图②中用( )格表示1箱,那么共用( )格半表示卖出橙汁的数量。(3分)
(5)我认为用图( )表示表中的数据更合适。(1分)
2.
(1)图中的小女孩应该怎样安排才能使所用的时间最少?(用图示表示)(6分)
(2)做完这几件事情,最少需要多少分钟?(5分)
3.小明和小亮玩“比卡片”游戏。两人每次出1张卡片(每张卡片只能出一次),比较2张卡片上数的大小,数大的一方获胜,采用三局两胜制。小明按,,的顺序出卡片,小亮要想获胜,他应该怎样出卡片?请完成下表。(6分)
小明: 小亮:
小明
小亮
获胜者
第一次
第二次
第三次
4.下面是2019年五一长假厦门的四个景点客流量统计表。
景 点
园博苑
胡里山炮台
鼓浪屿
万石植物园
游客/万人
5
4
18
12
请根据统计表完成统计图并回答下面问题。
(1)完成统计图(5分)
(2)( )游客最多,( )游客最少。(2分)
(3)如果你准备到其中一个景点游玩,根据统计情况,你会选择哪个景点,为什么?(2分)
答案
一、1.条形统计图 条形统计图
2.(1)1 (2)5 (3)100(或200)
3.(1)2 50 (2)游泳 跳绳
4.36
5.煮饭 用微波炉热菜和做汤 21
6.15 7.1
二、1.A 2.C 3.B 4.A 5.B 6.B 7.D
三、1.(1)(略) (2)1 2 (3)冰红茶 可乐
(4)15 半 7 (5)②
2.(1)
(2)4+15+6=25(分)
答:最少需要25分钟。
3. 小明 小亮 小亮
4.(1)(略) (2)鼓浪屿 胡里山炮台 (3)(略)
烙饼问题
一、教学内容
“烙饼问题”是人教版《义务教育课程标准实验教科书·数学》四年级上册P105“数学广角”
中的内容。主要通过讨论烙饼时如何合理安排操作最节省时间,让学生体会在解决问题中优化思想的应用。烙饼虽然是我们日常生活中常见的一种家务劳动,但里面蕴涵的数学问题和数学思想却是深刻的,教材的编排目的是通过日常生活中烙饼的简单事例,让学生尝试从解决问题的多种方案中寻找最优方案,从而向学生渗透优化的思想,让学生体会统筹思想在日常生活中的作用,使学生感受到数学的魅力。
二、学情分析
因为四年级的学生已经有了一定的解决问题的能力和基础,可以说,在日常的学习生活中,学生能很容易找到解决问题的方法,而且还会找到解决问题的不同策略,但这里的关键是让学生理解“优化”的思想,形成从多种方案中寻找最优方案的意识,提高学生的解决问题的能力。本节内容,“烙饼问题”学生是陌生的,而且“烙3个饼”的最佳方法与实际生活是有距离的,给学生的理解带来了困难。如何突破难点,让学生真正掌握,初步感受优化的数学思想方法呢?这对于学生来说还是比较抽象的。基于以上思考,我制定了以下教学目标:
三、教学目标
1、使学生通过烙饼这一事例,初步体会运筹思想在解决实际问题中的应用。并认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
2、让学生感受到数学在日常生活中的广泛应用,尝试用数学的方法来解决实际生活中的简单问题,初步培养学生的应用意识和解决实际问题的能力。
这部分知识对学生来说,比较抽象,难以理解的。特别是“烙饼的数量与时间之间的规律”的探究是本课的难点。指导探究“三张饼”的最优化方案是本课的重点。
四、学具、教具准备
学具为每组学生三个饼,为攻破三个饼烙法提供实践操作材料。变抽象为直观。在教具的安排上,我同样安排了“三张饼”作演示用,并以直观的多媒体课件相辅,进一步增加直观性,提高教学效率。
五、教学策略
新课程积极倡导自主、合作、探究的学习方式。本着以学定教、教服务与学的教学思想。在教学活动中,主要运用自主探究合作的学习方式进行教学,在突破本课重点时通过情境创设,激发学生学习兴趣,变“要我学”为“我要学”,在探究最佳方案时充分发挥学生的主动性,让学生小组合作自己动手操作,在操作的过程中发现问题、解决问题,体会解决问题时优化思想的应用。体现“做中学”的理念。在教学活动中,体现由引——帮——
放的教学策略,符合学生的认知规律。在教学过程中,采取手脑并用的教学,通过学生亲自动手操作,让学生观察、探索、思维与语言表达结合在一起,使学生对烙饼问题有一个形象的感知,并利用实物将知识直观动态地展示出来,同时作用于学生的感官,调动学生的学习积极性,给学生充分的时间和机会让他们主动参与获取知识的过程,培养学生自主学习意识与创新意识。
本着“将课堂还给学生,让课堂焕发生命的活力”的指导思想我设计了六个板块的内容:
第一个板块是“脑筋急转弯”,激发学习兴趣。目的有两个:一是拉近与学生的距离,二是为本节课做铺垫。
第二板块是自主探究,优化策略。
这一部分内容通过“操作感悟——抽象内化——巩固应用”三个片段,使学生在教师的点拨引导下,沿以下四个步骤:“一张和两张饼的烙法(基础)→三张饼的最佳烙法(难点)→双数饼、单数饼的烙法(提升)→最佳方案、双数饼:两张两张烙;单数饼:两张两张烙+最后3张饼交叉烙(优化)进行探究。
1、探索烙3张饼的最少时间是本节课的重点也是难点,优化的数学思想只能是“渗透”而不能“明透”,也就是说只能让学生在潜移默化的过程中理解,而不能仅仅靠传授。因此,本课中蓄势----为探索最佳方法打基础的方法,自认为运用得恰到好处。例如,围绕“烙2张饼最少要花6分,为什么烙1张饼与2张饼所用的时间一样多呢?你们是怎么想的?”这个问题,让学生体会烙2张饼是用足了空间,而烙1张饼浪费了空间和时间,为探索烙3张饼埋下了伏笔。
2、学生的自主探索是需要动机的,如果总是在教师的命令之下被动探索,那么效果是不会好的。要让学生主动探索,产生探索的源动力,关键就是要把握认知冲突,引导学生积极地投入到探索的全过程中。本课中,探索烙3张饼的最少时间,就是运用了“初步尝试暴露问题,再引导重新操作”的策略,学生的探索积极有效。例如,在探索最佳方案时请学生回忆一下,“1个饼和2个饼都要用6分的原因是什么?”的问题,学生积极思考,合作操作,谜底终于被慢慢揭开----原来只要不让锅浪费空间,就可以做到时间最少。
3、培养学生的应用意识和渗透数学优化思想,不是靠几道题目的讲解和练习就能完成的,而是需要随时随地引导学生自觉运用,在运用中逐步培养和提高应用意识。本节课一个明显的特点就是,不只是以探索到的具体某次烙饼的最佳时间为终极目标,而是重点引导学生在后继的学习过程中掌握方法,自觉应用。例如,探索了3张饼的最佳方法,在讨论烙5张饼时,学生想到了把5分成2张和3张进行思考,因为都有前面的结论和方法,只要6+9=15分就可以了,而不是拘泥于“零起点”去进行从头探索。同样,在7张、9张时推广应用,逐步探索得出规律。
第三板块是展示反馈,灵活运用。
运用探索的知识为餐厅的客人安排上菜,学以致用。
第四版块是总结内化,拓展应用。
本课教学中,我通过在烙两个饼、三个饼的优化方案的基础上,通过烙更多的饼,把学习过程层层推进,把静态的知识转化成了动态的过程,让学生在思考、讨论中逐步构建并完善自己的知识体系。尤其是,本课的点睛之笔还在于课末的生活化应用。众所周知,烙两个饼、三个饼是研究统筹思想的精典范例,但如果仅局限于此,还不够深刻,至少在提升学生思维品质上还有所欠缺。因此,在课末我安排了“为妈妈设计烙饼方案”的环节。通过围绕“要烙 15 个饼,怎样烙时间最省”这一问题的讨论,让学生自觉地意识到“把 5 个饼看成一份”,从而把新问题转化成旧知识,在学生的脑海中牢固地构建起烙饼策略的数学模型。
六、教学反思
数学广角
——《田忌赛马——对策问题》说课稿
一、说教材
1、说教材内容
“田忌赛马”是人教版教材数学四年级上册第八单元“数学广角—优化”中例3的内容。
2、教材简析
教材选“田忌赛马”作为例题,是因为它是运用“对策论”最古老、最典型的案例,研究的是采用什么对策才能战胜对手。教材编排的目的是要让学生从数学的角度去理解这个故事,并从中体会对策论在实际中的应用。结合《数学课程标准》倡导的 “素材要密切联系学生的现实生活,运用学生关注和感兴趣的实例作为认识的背景”。我大胆改变教材,运用半个动画片引入,提起学生的兴趣,再运用双人对学“摆一摆”的方式进行“策略”探究的教学,再通过合作学习的方式列出田忌的所有对策探索出“最佳对策”。生动有趣,更具有实效性。
3、教学目标的确定:
基于以上认识,我确定本节课的教学目标为:
(1)通过简单的事例,使学生初步体会对策论在解决实际问题中的应用。
(2)通过有趣的活动,让学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
(3)感受数学在日常生活中的广泛应用,尝试用数学的方法来解决生活中的一些问题。
4、教学重点:经历探索“最佳对策”的过程。
教学难点:初步理解“最佳对策”的原理。
5、教具准备:多媒体课件。
学具准备:自主学习单两张。
二、说教法学法
根据教材特点和学生的年龄特征,本节课我采用最近小教科提出的模块教学进行教学,教学中辅以“情景创设法、兴趣激励法”等教学方法。在学法指导上,我把学习的主动权交给学生,引导学生采用“动手摆一摆、列表归纳”等学习方法,在双人对学,合作学习,合作交流的过程中,引发思维的碰撞,最终掌握新知。
三、说教学过程
为优化教学过程,体现理念,在教学中,我从下面三方面开展教与学:
(一)激趣引入,提出问题;
新课一开始,我为学生播放一半的《田忌赛马》的动画片(第一次齐王与田忌上等马对上等马,中等马对中等马,下等马对下等马),并在黑板上用贴图贴出比赛结果,然后向学生提出:看到这样的结果,如果你是田忌,你会想些什么?的问题,让学生提出自己的问题,或这是想要说的话。
【设计意图:本环节以儿童喜爱的动画片导入,符合儿童的年龄特点和心理特征,唤起了学生的学习兴趣,为后面的学习活动打下了基础。】
(二)自主探究,寻找统筹优化数学思想方法;
第一层次:“摆一摆”背后的数学
首先,我抓住学生爱动手操作的心理,为他们准备了自主学习单(一),以及一些小马的图片,以双人对学的方式让他们进行探究活动。找到“赢”的方法后把结果再填写到表格。并到讲台展讲。
第二层次:探讨“最佳策略”
通过上面的学习,学生发现了“策略”的基本含义与方法
我接着问:那是不是只有这一种方法能赢齐威王呢?假如我们再次更换马的出场顺序又会是怎样的输赢结果呢?让学生再合作学习完成自主学习单(二),从中得出在所有的策略里只有这一种方式可以赢得比赛。
【设计意图:因为对策本身是一个很抽象的概念,学生只有经历了知识的形成过程,才能建构新的知识体系。所以,在本环节,我让学生亲自在“摆一摆”的活动中,从自己的思维实际出发,经历一次“研究与发现”的完整过程,得出“赢”的策略。使学习成了一种乐趣,数学课成了活动的课堂、创造的课堂。】
第三层次:体会成功的乐趣
播放后半部分动画片,让学生体会“我也行”“我真厉害”
这时我再指出:对,田忌的好朋友孙膑就是这样做的。在2000多年以前,我国人民就已经会运用“对策论”来解决问题,中国人多么伟大啊!
(三)运用练习,巩固提高
2)对策在生活中的运用
这时我再让学生思考,“对策论”在实际生活中还有哪些运用呢? 在学生们举出乒乓球比赛、棋类比赛等,都要运用到策略后。我再指出对策问题在生活中广泛存在,像体育活动到外交谈判、军事部署等领域中都有重要的作用。并解决“比赛问题”“猎人过河”两题。
【设计意图:本环节让学生用自主学习掌握的策略方法,应用到实际生活中,使学生进一步认识到“对策论”的深刻魅力,了解对策论方法在生活中的应用价值。】
(四)评价
在总结评价中,我在学生自己提问题;单人,双人,多人展讲时给小组负分。
(五)课后小活动
课后游戏:取棋子
游戏规则:
(1)两人一组10颗棋子。
(2)10颗棋子排成一条线,从左往右一次取棋子,每人每次可取1颗,也可取2颗。
(3)谁最先拿到第10颗,谁就获胜。
要求:(1)试玩几次,找到自己必胜的策略。
(2)课后与同学或家人游戏。
田忌赛马
学习目标:
1.知道解决问题的策略有很多种。
2.会运用最佳的策略解决生活中的问题。
新知导引:
请认真看动画片哦!看看片中说了什么?
自主学习:
1.故事中田忌和齐王赛了( )次马。
2.第一次,田忌用同等马与齐王进行比赛。根据比赛安排完成下表。
齐王
田忌
本场胜者
第一场
上等马
第二场
中等马
第三场
下等马
想一想:这样的安排,结果是( )输了,
因为( )。
3.第二次,齐王认为自己胜券在握,还是排出了原来的出战顺序,可田忌却听从了好友孙膑的安排,改变了自己马的出场顺序,居然战胜了齐王。
齐王
田忌
本场胜者
第一场
上等马
第二场
中等马
第三场
下等马
想一想:这次的结果是
( )赢了,同样还是这些马,结果却是不同,因为
( )。
合作探究:(小组合作完成下表,并填写“我发现”和“小结”。)
1.小组合作完成:田忌共有多少种可采用的应对策略?填在下面的表格里。(做到不遗漏,不重复。)
第一场
第二场
第三场
获胜方
齐王
上等马
中等马
下等马
田忌1
上等马
中等马
下等马
齐王
田忌2
上等马
田忌3
中等马
田忌4
中等马
田忌5
下等马
上等马
中等马
田忌
田忌6
下等马
我发现:田忌虽然有( )种可采用的对策,但能赢齐王的只有( )种对策。
田忌怎样做才能保证获胜:
第一、让( )先出马。
第二、用田忌的( )对齐王的上等马,才能换取其他两场的( )。
2.小组讨论:在这些策略中田忌有( )种能赢齐王的方法?并且是( )的一种能赢齐王的方法。
3.课堂小结:
把解决问题的所有可能性( )找出来,并从中找到( )的方法。我们把这种方法叫做对策论。
巩固应用:
“田忌赛马”的策略可以在哪些地方应用?
1.两人玩扑克牌比大小的游戏,每人每次出一张牌,各出3次,三局两胜。怎样才能让实力稍逊的黑方赢呢?( 把上下相对的两张牌用线连起来。)
2.比赛采用三局两胜制,如何才能让四年级组获胜?如何对阵,请连线。
四年级组1分钟拍球个数: 五年级组1分钟拍球个数:
1号10个 1号20
2号30个 2号40
3号50个 3号60个
归纳总结:
从上面的三个案例中,我们知道:要改变稍逊状态,就要仔细观察,勤动脑筋。先让( )出牌,我方再用最弱的牌消耗掉对方( )的牌,以后每次出牌都用稍高一档次的牌对阵对方稍低一档次的牌,这样才能获得成功。
达标测评:
排球比赛(五局三胜制),如果比赛中每个人都发挥正常,第2队怎样对阵才能获胜?如果你有多种制胜的策略,可以补充在导学案的空白处,有几种就写几种。必须至少找到一种让第二队获胜的方法。
第一队: 第二队:
陆 莎 230下 宋圆圆 220下
赵天晓 220下 肖 刚 210下
陶欣然 205下 何文龙 190下
杜小雯 180下 刘佳佳 165下
程 刚 155下 朱 曼 150下
怎样安排最省时间
学习目标
1、学生通过简单的实例,初步体会运筹思想在解决实际问题中的应用。
2、使学生认识到解决问题策略的多样性,形成寻找解决问题最优方案的意识。
3、理解优化的思想,形成从多种方案中寻找最优方案的意识,提高学生解决问题的能力。
4、使学生感受到数学在日常生活中的广泛应用,尝试用数学方法解决生活中的简单问题。
学习重难点
教学重点: 体会优化的思想。
教学难点: 寻找解决问题最优方案,提高学生解决问题的能力。
使用说明
本卡课前使用,一定要独立完成,不得相互讨论。把已弄懂的和未完成的留到小组内说一说自己的看法。
自主学习问题
学法指导
学前小热身:
1.请你用“一边……一边……”造个句子。( )
2.你能一边做数学题,一边写英语单词吗?( )
3.你能一边扫地,一边听音乐吗?( )
通过上边几个生活中的实例,我们知道有的事情可以同时做,来节省时间,但有些事情不能同时做,我们必须合理安排时间,来提高我们的学习和工作效率。
自学问题提示:
认真观察课本104页家里来客人要沏茶的情境图。
小明,帮妈妈浇壶水,给李阿姨沏杯茶,怎样才能尽快让客人喝上茶?观察理解情境图。结合你自己准备的学具,试完成以下问题。
1.如果一道一道工序的完成需要多长时间?请写出工序顺序并算出时间。( )
2. 如果你是小明,你怎样安排更省时间?需要多长时间?请写出来。
( )
3.这些工序中哪些事情要先做?哪些事情可以同时做?
让学生认真自学课本,独立完成问题,自己解决不了的可以
留到课上待交流讨论解决。
自主学习总结:
通过自主学习我完成了( ),对上面( )问题中( )不能很好地理解。由此我想要提出的问题是( )。
烙饼问题导学案
课题
烙饼问题
学习时间
复
习
巩
固
1、我们上一单元学习了( )统计图和( )统计图。它有( )好处。
2、说一说,你看过爸爸妈妈烙饼吗?怎样烙的?
预
习
导
学
学习
目标
能过生活中的简单事例,初步体会到优化思想在解决实际问题中的应用。认识到解决问题的策略的多样性,初步形成寻找解决问题最优化方案的意识。
学习
重点
体会优化的思想,探究解决问题的最优方案。
学习
难点
探究解决问题的最优方案,提高解决问题的能力。
内
容
与
方
法
1、阅读教材105页,理解图意。
2、从图中你了解到:一只平底锅每次只能烙( )张饼,两面都要烙,每面需要( )分钟,想一想,如果只烙一张饼,需要( )分钟,那么要烙两张饼,最快要( )分钟呢?因为一个平底锅一次可以烙两张饼,所以烙一张饼和烙两张的时间( )。
3、如果爸爸、妈妈和我一人要吃一张饼,要烙( )张饼?妈妈要怎样烙,才能让大家最快吃上饼?请你借助硬币、课本或写有正、反的橡皮、纸片等摆一摆,试一试,将结果记录在下表中。
烙饼次数
饼1
饼2
饼3
耗时(分)
总时间:
4、你发现烙3张饼,最快只需要( )分钟。你第一次先烙第1张和第2张的( )面,第二次烙第1张的( )面和第3张的( )面,第三次烙第( )的面和第( )张的( )面。
5、如果要烙的是4张饼,5张饼……10张饼呢?你发现了什么?
6、烙4张饼最快要( )分钟,烙5张要( )分钟,烙6……10张分别要( )分钟。
7、你发现:如果要烙的饼是双数,( )地烙就可以了。如果要烙的饼是单数,可以先( )地烙,最后的3张,就按照前面探究出的方案去烙最节约时间。
当
堂
训
练
基
础
练
习
1、105页“做一做”2题
(1)从图中你了解到( )
顾客1
顾客2
顾客3
第一次
第二次
第三次
2、用一口平底锅煎饼,假设煎一张饼需要4分钟。第一面需要2分钟,每次可以煎2张,煎3张饼至少需要( )分钟。
3、每只锅每次最多煎两条鱼,煎1条鱼需要2分钟(正、反面各1分钟)。煎3条鱼最少需要多少时间?
4、一个电脑小游戏,可以单人玩,也可以双人玩,每局的时间是10分钟。现在有甲、乙、丙三个小朋友每人都想玩2局,你打算怎样安排?最少需几分钟?
思维
拓展
1、想一想:一张饼烙( )面,如果一面需要2分钟,烙一张需要( )分钟。一口平底锅每次可以烙3张饼,烙3张饼至少需要( )分钟。
2、煮一个鸡蛋需要8分钟,一口锅一次可以煮10个鸡蛋,那么煮10个鸡蛋至少需要( )分钟。