- 1.64 MB
- 2021-11-24 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
三年级上册第三单元拔高题-加与减
【例 1】连一连。
【例 2】在○里填上“>”、“<”或“=”。
【例 3】光明中学组织三、四、五三个年级的同学们共计 718 人去春游,现在已
知三年级参加的学生人数为 189 人,四年级为 227 人。五年级有多少人参加?
三年级上册第三单元拔高题-加与减
参考答案
【例 1】连一连。
解析:
先把每个综合算式的得数计算出来,再把算式和相应
的得数直尺连线。如:324-128+104,先把前两个数字
相减 324-128,求出差是 196;再把得数 196 和第三个
数字相加 196+104,求出和是 300;故把算式 324-128+104
和数字 300 直尺连线。
解答:
【例 2】在○里填上“>”、“<”或“=”。
解析:
第一组算式 607-127+280○725-384+161,先分别
○两边算式的得数,左边 607-127+280,先算 607-127,
差是 480,再算 480+280,求出和是 760;右边 725-384+161,
要点提示:
在只有加减法的混合运算
中,按照从左往右的顺序依
次进行计算。
要点提示:
先计算出每个算式的得数,
再比较大小。
先算 725-384,求出差是 341,再算 341+161,求出和是 502;
最后比较大小 760>502,也就是 607-127+280> 725-384+161,故○中应填>。
解答:
><
【例 3】光明中学组织三、四、五三个年级的同学们共计 718 人去春游,现在已
知三年级参加的学生人数为 189 人,四年级为 227 人。五年级有多少人参加?
解析:
已知光明中学组织三、四、五三个年级的同学们共计
718 人去春游,现在已知三年级参加的学生人数为 189 人,
四年级为 227 人,求五年级有多少人参加。也就是用总人
数依次减去三年级和四年级参加的学生人数,列式为
718-189-227。计算时可以脱式计算,也可以竖式计算。
解答:
718-189-227
=529-227
=302(人)[来源:学科网 ZXXK]
答:五年级有 302 人参加.
三年级上册第四单元拔高题-乘与除
【例 1】算一算。
【例 2】整十数乘一位数且积是 240 的 乘法算式,你能写出多少个?
【例 3】在校庆文艺体操表演中,三年级一共有 80 名同学参加,每 4 人分成一
要点提示:
竖式计算加减法时,注意相
同数位要对齐。
组,一共分成了多少组?
【例 4】一个工厂,有男职工 200 人,女职工的人数是男职工的 4 倍,这个工厂
共有职工多少人?
【例 5】猜猜每种图形代表哪一个整十数。
○×3=1○ □×6=3□
三年级上册第四单元拔高题-乘与除
参考答案
【例 1】算一算。
解析:
两位数乘(除)一位数的口算方法:先把两位数分成几个
要点提示:
整十、整百数乘(除)一位数的口
算方法:可以用因数中 0 前面的数
和一位数相乘(除),再看因数末
尾有几个 0,有几个 0 就在积(或
商)的末尾添上几个 0。
十和几个一,再分别与一位数相乘(除),最后把得到的
两个积(商)相加。如 13×3,先算 10×3=30,3×3=9,
再算 30+9=39,所以 13×3=39;36÷3,先算 30÷3=10,
6÷3=2,再算 10+2=12,所以 36÷3=12.
解答:
.
【例 2】整十数乘一位数且积是 240 的 乘法算式,你能写出多少个?
解析:
因为要写的算式是整十数乘一位数且积是 240,只要
运用表内乘法,找出积是 24 的两个数,然后把两个
因数中的一个写成整十数就可以了。积是 24 的口诀
有两句,在其中一个因数末尾加上 0,每句口诀都有
两种写法,共能写出 4 道算式。
解答:
30×8=240 80×3=240 40×6=240 60×4=240
【例 3】在校庆文艺体操表演中,三年级一共有 80 名同学参加,每 4 人分成一
组,一共分成了多少组?
解析:
已知在校庆文艺体操表演中,三年级一共有 80 名同学
参加,每 4 人分成一组,求一共分成了几组,应该用
除法计算,列式为 80÷4.在口算 80÷4 的得数时,可以把
80 看作 8 个十,8 个十除以 4 就是 2 个十,即 80÷4=20.
解答:
要点提示:
熟练掌握表内乘法是解决
此类问题的关键。
要点提示:
口算除法不要急,先想乘法
再做除。利用表内除法算,
末尾添 0 要数清。
80÷4=20(组)
答:一共分成了 20 组.
【例 4】一个工厂,有男职工 200 人,女职工的人数是男职工的 4 倍,这个工厂
共有职工多少人?
解析:
一个工厂,有男职工 200 人,女职工的人数是男职工
的 4 倍,求这个工厂共有职工总人数。先求出这个工厂
女职工人数,也就是 4 个 200 是多少,选择乘法列式
计算,列式为 200×4,在口算 200×4 的得数时,可以把
200 看作 2 个百,2 个百乘 4 就是 8 个百,即 200×4=800;
再求职工总人数,女职工人数+男职工人数=职工总人数,列式为 800+200,求出
和是 1000;列成综合算式为 200×4+200.
解答:
200×4+200
=800+200
=1000(人)答:这个工厂共有职工 1000 人.
【例 5】猜猜每种图形代表哪一个整十数。
○×3=1○ □×6=3□
解析:
运用表内乘法进行整十数乘一位数的口算,一个整十数
与 3 相乘,得到一个三位数,百位是 1,其他各位仍是
这个整十数。解答时可以一个一个地试,还可以把积
看作 100 加这个数,等号前面的算式可以看作 3 个这样的数相加,等号两边都减
去一个这个数,这个算式就可以写成○+○=100,所以○=50 .另一个算式解答方
法同第一个。
解答:
50×3=150 ○=50; 60×6=360 □=60.
三年级上册第五单元拔高题-周长
要点提示:
求一个数的几倍是多少,选
择乘法列式计算。
要点提示:
相同的图形表示的数相同。
【例 1】用笔描出下面各图形的周长。
【例 2】完成下面的表格(单位:厘米)。
【例 3】计算下面图形的周长。
【例 4】数一数下面图形的周长是多少厘米,再画一个边长是 3 厘米的正方形。
(每个小正方形边长 1 厘米)。
【例 5】淘气用一根长 36 厘米的铁丝围成一个最大的正方形,这个正方形的边
长 是多少厘米?
【例 6】一块长方形菜地,长 6 米,宽 3 米。四周围上篱笆,篱笆长多少米?如
果一面靠墙,篱笆至少要多少米?[来源:学*科*网 Z*X*X*K]
三年级上册第五单元拔高题-周长
参考答案
【例 1】用笔描出下面各图形的周长。
解析:
给出的这些图形都是平面图形,又都是封闭图形,在
各个图形的边缘找一点,由这一点起沿边缘画一周,
再回到起点,是各个图形的周长。
解答:
【例 2】完成下面的表格(单位:厘米)。
解析:
(1)长方形的周长就是要把长方形四条边加起来,但是
长方形的对边是相等的,所以我们只要知道长方形相邻
两边的长度即可,用公式“长方形的周长=(长+宽)×2”
来计算。
(2)正方形的周长就是正方形四条边的长度总和。根据正方形的四条边相等,
可以把四条边的边长加起来,也可以用一条边的长度乘 4,即正方形的周长=边
长×4.
要点提示:
每个图形所画线的长度是
这个图形一周的长度,即周
长。
要点提示:
长方形的对边相等,
正方形的四条边相等。
解答:
【例 3】计算下面图形的周长。
解析:
把每个图形各个边长相加就是每个图形的周长。
如:从左往右第二个图形,四条边长分别为 18 分米、
19 分米、16 分米和 14 分米,求它的周长,也就是把
这四条边的长度加在一起,列式为 18+19+16+14,求出[来源:学科网 ZXXK]
得数是 67;第三个图形看起来是个不规则图形的周长,
也就是要把所有的边长都加起来。通过平移图形中曲折的部分,正好可以拼成一
个长 10 厘米 、宽 8 厘米的长方形。利用长方形周长=(长+宽)×2,求出它的
周长。
解答:
21+23+27=71(厘米) 18+19+16+14=67(分米) (8+10)×2=36(厘米).
【例 4】数一数下面图形的周长是多少厘米,再画一个边长是 3 厘米的正方形。
(每个小正方形边长 1 厘米)。
要点提示:
封闭图形一周的长度,是它
的周长。
解析:
根据题意可知:先数出每个图形的周长,再画出一个
边长是 3 厘米的正方形。数每个图形的周长时,可以
一个一个地数小正方形边长的个数,有多少个小正方形的
边长就有多少厘米,也可以先把两个不规则图形,通过
平移成规则图形,再求周长;画边长是 3 厘米的正方形,也就是画出边长是 3
个小正方形边长的正方形。
解答:
【例 5】淘气用一根长 36 厘米的铁丝围成一个最大的正方形,这个正方形的边
长 是多少厘米?
解析:
根据题意可以知道:淘气用一根长 36 厘米的铁丝围成
一个最大的正方形,求这个正方形的边长,也就是
把 36 厘米的铁丝平均分成 4 份,求每份的长度,选择
除法列式计算,列式为 36÷4,求出商是 9,故这个正方形的边长是 9 厘米。
解答:
36÷4=9(厘米)
答:这个正方形的边长是 9 厘米.
【例 6】一块长方形菜地,长 6 米,宽 3 米。四周围上篱笆,篱笆长多少米?如
果一面靠墙,篱笆至少要多少米?[来源:学*科*网 Z*X*X*K]
要点提示:
正方形的四条边都相等,
四个角都是直角。
要点提示:
正方形的周长=边长×4。
解析:
把一块长 6 米,宽 3 米的长方形菜地,四周围上篱笆,
求篱笆的长度。根据长方形的周长计算公式,可以求出
篱笆的长度,是(6+3)×2。如果一面靠墙,求篱笆
至少要多少米,也就是长方形菜地的长靠墙时,此时需要的篱笆最短,是两个宽
的长度加一个长的长度,列式为 6+3×2.
解答:
(6+3)×2=18(米) 6+3×2=12(米)
答 :篱笆长 18 米,篱笆至少要 12 米.
三年级上册第一单元拔高题-混合运算
【例 1】下面的计算对吗?对的打“√”,错的打“×”,并把错的改正过来。
【例 2】想一想,填一填。
要点提示:
长方形的周长=(长+宽)×2。
【例 3】想一想,下面的小动物各代表数字几。
【例 4】小 灰钓了多少条鱼?
三年级上册第一单元拔高题-混合运算
参考答案
【例 1】下面的计算对吗?对的打“√”,错的打“×”,并把错的改正过来。
解析:
在没有小括号的混合运算中,要先算乘除法,再算加减法;
在计算含有小括号的混合运算时,要先算小括号厘米的,
再算小括号外面的。
解答:
要点提示:
小括号的作用就是改变
运算顺序。
【例 2】想一想,填一填。
解析:
根据题意可以知道:先计算出每个算式的得数,再尝试
着把两个算式合并成一个算式。把两个算式合并成一个
算式,首先根据第一个算式的得数,把算式代入第二个
算式;然后根据混合运算的顺序判断是否需要加括号。
如:第一个计算 5+7 的和是 12,12÷3,商是 4,把算式 5+7 替换第二个算式中
的 12,列综合算式 5+7÷3,按照混合运算的顺序,先算除法,后算加法,和原
来的运算顺序就不一致了,所以要用小括号把 5+7 括起来,列式为(5+7)÷3.
解答:
【例 3】想一想,下面的小动物各代表数字几。
要点提示:
列综合算式时,要根据计算
的先后顺序加小括号。
解析:
① ,求 。
也就是( )+27-19=36,则( )=36+19-27,求出得数
是 28.
② ,求 。先求出小括号里 的和,
=91-47=44,再利用 44-18,求出小鸭子代表的数字。
③4×7-5,先算 4×7 的积是 28,再算 28-5 的差是 23,所以小乌龟代表的数字
是 23.
④ ,求 。先求出小括号里 的差,
=72-29=43,则小象=63-43,求出差是 20.
解答:
①28②26③23④20.
【例 4】小 灰钓了多少条鱼?
要点提示:
运用逆推思路是解决此类
问题的关键。
解析:
小黑有 9 条金鱼,小白钓的鱼是小黑的 4 倍,小灰比
小白多钓 26 条,求 小灰钓了多少条鱼。先求出小白
钓的鱼的条数,也就是 4 个 9 相加的和,列式为 9×4;
再求出小灰钓的鱼的条数,小白钓的鱼的条数+26=
小灰钓的鱼的条数,即 9×4+26;计算时,先算 9×4=36,再算 36+26=62.
解答:
9×4+26=62(条)
答:小灰钓了 62 条鱼。
三年级上册第八单元拔高题-认识小数
【例 1】看图填空。
【例 2】换算成以“元”为单位的小数。
4 元 5 角=( )元 2 元 8 分=( )元
要点提示:
解决问题时,先要根据问题
分析数量关系。
8 元 8 角 8 分=( )元 2 角 5 分=( )元
【例 3】比较大小。
【例 4】一个笔筒 5.6 元,一个削笔刀 2.9 元,一本日记本 8.5 元。淘淘带了 18
元 9 分。
(1) 买一个笔筒和一个削笔刀需要多少钱? (2)他剩下的钱够不够买日记
本?
三年级上册第八单元拔高题-认识小数
参考答案
【例 1】看图填空。
解析:
8.50 元,整数部分是 8,表示 8 元,小数点后面第一位
小数是 5 表示 5 角,第二位小数 0 表示 0 分;
6.55 元,整数部分是 6 表示 6 元,小数点后面第一位
小数是 5 表示 5 角,第二位小数 5 表示 5 分;
5.08 元,整数部分是 5 表示 5 元,小数点后面第一位
小数是 0 表示 0 角,第二位小数 8 表示 8 分;
0.82 元,整数部分是 0 表示 0 元,小数点后面第一位小数是 8 表示 8 角,第二
位小数 2 表示 2 分。
解答:
8 元 5 角 0 分 6 元 5 角 5 分 5 元 0 角 8 分 0 元 8 角 2 分.
【例 2】换算成以“元”为单位的小数。
4 元 5 角=( )元 2 元 8 分=( )元
8 元 8 角 8 分=( )元 2 角 5 分=( )元
解析:
根据 1 元=10 角,1 元=100 分,可以知道 1 角=0.1 元,
1 分=0.01 元。4 元 5 角是 4 元加 5 个 0.1 元是 4.5 元;
2 元 8 分是 2 元加 8 个 0.01 元是 2.08 元;8 元 8 角 8 分
是 8 元加 8 个 0.1 元加 8 个 0.01 元是 8.88 元;2 角 5 分
是 2 个 0.1 元加上 5 个 0.01 元是 0.25 元。
解答:
4.5 2.08 8.88 0.25.
【例 3】比较大小。
解析:
首先统一单位,可以把所有数量统一用元作单位,那么
5 元、5 角、1 角合起来是 5.6 元,5 元、5 角、1 分合
起来是 5.51 元,再比较 5.6 元和 5.51 元的大小,比较
小数的大小时,先比较整数部分,整数部分相等都是 5,
要点提示:
当用小数表示商品的价钱时,整数
部分表示的是几元,小数点后面第
一位小数表示几角,第二位小数表
示几分。
要点提示:
小数点要写成“.”,不要写
成“、”或“。”。
要点提示:
先分别求出每组的总钱数,
再比较大小。
再比较小数部分,先比较十分位上的小数 6 大于 5,故 5.6 元>5.51 元。同样的
方法比较用小组记录下一组人民币并比较大小。
解答:
5.6 元> 5.51 元 11.6 元< 12 元.
【例 4】一个笔筒 5.6 元,一个削笔刀 2.9 元,一本日记本 8.5 元。淘淘带了 18
元 9 分。
(1)买一个笔筒和一个削笔刀需要多少钱? (2)他剩下的钱够不够买日记本?
解析:
(1)求买一个笔筒和一个削笔刀需要的钱数,就是求
5.6 元和 2.9 元的和是多少,用加法列式计算,列式为
5.6+2.9。
(2)求剩下的钱够不够买日记本,先求出剩下的钱,
再和一本笔记本的价钱 8.5 元作比较。
解答:
(1)5.6+2.9=8.5(元) (2)18 元 9 分=18.09 元 18.09-8.5=9.59 元
9.59> 8.5
答:买一个笔筒和一个削笔刀 答:他剩下的钱够买日记本。
需要 8.5 元.
三年级上册第二单元拔高题-观察物体
【例 1】下面右边的图形分别是谁看到的?连一连。
【例 2】
要点提示:
列竖式时,元与元所在的数位对
齐,角与角所在的数位对齐,分与
分所在的数位对齐,这样就做到了
相同数位对齐。
【例 3】下面右边的图形分别是谁看到的?连一连。
三年级上册第二单元拔高题-观察物体
参考答案
【例 1】下面右边的图形分别是谁看到的?连一连。
解析:
老师和小女孩、小男孩看的都是同一张讲桌,但他们
要点提示:
从不同位置观察同一物体,
所看到的形状是不同的。
观察的位置是不同的。小女孩站在讲桌的左面,她看到
的是从左往右第三幅图;小男孩站在讲桌的右侧面,他
看到的是从左往右第 2 幅图;老师站在讲台上,她看到
的是讲桌的上面,是从左往右第一幅图。
解答:
.
【例 2】
解析:
观察物体时,眼睛要直视所观察物体的面;
从正面看情景图,可以看到左面是长方形,右面是圆;
从右面看,可以看到圆和长方形重合并且长方形大于圆;
从左面看,长方体挡住了球,故只能看到所对的
长方体的一个面,也就是长方形。
解答:
.
要点提示:
要分辨出看到的是什么图
形,关键是要弄清楚站在哪
一面。
【例 3】下面右边的图形分别是谁看到的?连一连。
解析:
头上扎蝴蝶结的小女孩站在情景图的正面,也就是从
前面观察物体,看到的是两行摆放的正方形,其中
从上往下第一行左侧摆放一个正方形,第二行左侧
和右侧均摆放一个正方形;另一个小女孩站在情景图
的右面,也就是从右面观察物体,看到的是竖直摆放的
两个正方形。
解答:[来]
三年级上册第九单元拔高题-总复习
【例 1】 学校里买来一些菊花,如果每行摆 6 盆,可以摆 4 行;如果每行摆 3
盆,可以摆几行?
【例 2】生活中的数学。
要点提示:
从不同方向观察正方体,看
到的均是正方形。
【例 3】在下面的四幅图的括号中写上小朋友的名字。
【例 4】把 211、212、213、214 这四个数填入框中,使等式成立。
□+□-□=□
【例 5】欢乐剧场的观众席分 A、B、C 三个区,A 区有 244 个座位,B 区有 228
个座 位,C 区比 A、B 两区的总和少 122 个座位,欢乐剧场一共能容纳多少名观
众?
【例 6】动脑筋。
已知△+○=□,△+○+□=60,那么□=( )。
【例 7】要把一个长 9 厘米,宽 7 厘米的长方形剪成一个最大的正方形,剪去的
长方形的周长是多少厘米?
【例 8】请把 2、4、5、0 这四个数填入□里,要使积最大,应该怎样填?
□□□×□
【例 9】一列火车 6 时从甲站开出,15 时到达乙站。这列火车平均每小时行 150
千米,甲、乙两站相距多少千米?
【例 10】一桶油,连桶共重 138.4 千克,连桶用去一半后,剩下的油连桶重 75.5
千克,油桶重多少千克?
三年级上册第九单元拔高题-总复习
参考答案
【例 1】学校里买来一些菊花,如果每行摆 6 盆,可以摆 4 行;如果每行摆 3 盆,
可以摆几行?
解析:
根据题意可知:学校里买来一些菊花,如果每行摆
6 盆,可以摆 4 行;如果每行摆 3 盆,求可以摆几行。
要点提示:
一个问题需要多个步骤解
决时,要想好先解答什么,
再解答什么。
不论如何摆放花盆,花盆的总数量是不变的,先求出
摆放花盆的总数量,每行摆的花盆数量 6×摆的行数 4
=摆放花盆总数量,列式为 6×4;再求出可以摆几行,[来源:Zxxk.Com]
也就是 6×4 里面有几个 3,选择除法列式计算,列式为 6×4÷3;计算时按照从
左往右的顺序依次进行计算,先算 6×4=24,再算 24÷3=8.
解答:
6×4÷3=8(行)
答:可以摆 8 行.
【例 2】生活中的数学。
解析:
(1)每听可口可乐 4 元,李叔叔买了 8 听,付出 35 元,
求应找回多少元。先求出李叔叔买 8 听可口可乐所需要
的总钱数,也就是求 8 个 4 相加的和是多少,列式为
8×4;再求应找回的钱数,35-8 听可口可乐需要的钱数
=应找回的钱数,列式为 35-8×4,计算时,先算 8×4=32,
再算 35-32=3.
(2)一个面包 5 元,一袋牛奶 3 元,王芳买了一个面包,一袋牛奶,结果还剩
18 元,求她一共带了多少钱。也就是一个面包的钱数+一袋牛奶的钱数+剩下的
要点提示:
解决多个问题时,先根据每
个问题分析数量关系,再根
据数量关系找出解决各个
问题需要的已知信息。
钱=一共带的钱数,列式为 5+3+18,按照从左往右的顺序进行计算,求出和是 26.
(3)根据题目体操其它用两步计算的数学问题,答案不唯一。如:用买 4 袋牛
奶的钱可以买几听可口可乐。
解答:
(1)35-8×4=3(元)答:应找回 3 元。
(2)5+3+18=26(元)答:她一共带了 26 元钱。
(3)答案不唯一。
用买 4 袋牛奶的钱可以买几听可口可乐?
3×4÷4=3(听)答:用买 4 袋牛奶的钱可以买 3 听可口可乐。
【例 3】在下面的四幅图的括号中写上小朋友的名字。
解析:
小朋友们站在不同位置观察杯子,他们看到的杯子是
不一样的。小华看到的是杯子把儿朝向自己,小明看到
的是杯子把儿朝向左面,小亮看不到杯子把儿,小杰
看到的是杯子把儿朝右。
解答:
【例 4】把 211、212、213、214 这四个数填入框中,使等式成立。
□+□-□=□
要点提示:
解决观察图形的实际问题时,
一定要从侧面、正面、上面三
个角度看到的图形去考虑。
解析:
根据加减法的意义和 数的特点考虑,可以把原式变为
□+□=□+□。这 4 个数是 4 个连续的自然数,相邻两个
自然数相差 1,所以首尾两数的和等于中间两数的和,把
这 4 个数写成两个和相等的算式,然后再变回原式就可以了。
解答:
211+214-212=213 或 211+214-213=212
或 212+213-211=214 或 212+213-214=211.
【例 5】欢乐剧场的观众席分 A、B、C 三个区,A 区有 244 个座位,B 区有 228
个座 位,C 区比 A、B 两区的总和少 122 个座位,欢乐剧场一共能容纳多少名观
众?
解析:
已知欢乐剧场的观众席分 A、B、C 三个区,A 区有 244
个座位,B 区有 228 个座位,C 区比 A、B 两区的总和少
122 个座位,欢乐剧场一共能容纳多少名观众。先求出
C 区的观众总数量,A 区观众数量+B 区观众数量-122=
C 区观众数量,列式为 244+228-122,求出得数是 350;再求出一共能容纳的观
众总数量,也就是把这三个区的观众数量合在一起,选择连加列式计算,列式为
244+228+350,求出和是 822.
解答:
244+228-122 244+228+350=822
=472-122 =472+350
=350(名) =822(名)
答:欢乐剧场一共能容纳 822 名观众.
【例 6】动脑筋。
已知△+○=□,△+○+□=60,那么□=( )。
解析:
已知△+○=□,△+○+□=60,求□=( )。我们可以
把第一个算式△+○=□,代入第二个算式△+○+□=60 中,
要点提示:
根据被减数-减数=差,可以
知道被减数=减数+差。
要点提示:
求一共的观众总数,就是把
三个区的观众数量合在一
起,求和。
要点提示:
把第一个算式等量代换到
第二个算式,是解决此类问
题的关键。
也就是□+□=60,故□=30。
解答:
30.
【例 7】要把一个长 9 厘米,宽 7 厘米的长方形剪成一个最大的正方形,剪去的
长方形的周长是多少厘米?
解析:
要把一个长 9 厘米,宽 7 厘米的长方形剪成一个最大
的正方形,求剪去的长方形的周长是多少厘米。先求出
剪成的最大正方形的边长,也就是长方形的宽,是 7 厘米;
再求出剪去的长方形的长和宽,长是原来长方形的长
7 厘米,宽是原来长方形的长减去剪成正方形的边长,列式为 9-7=2 厘米;最后
求出剪去长方形的周长,(7+2)×2.
解答:
(9-7+7)×2=18(厘米)
答:剪去的长方形的周长是 18 厘米.
【例 8】请把 2、4、5、0 这四个数填入□里,要使积最大,应该怎样填?
□□□×□
解析:
要使积最大,最大数 5 应是一位数,第二大数 4 应该
是三位数的首位,2 放在三位数的十位上,0 放在三位数
的个位上,这时所得的积最大。
解答:
420×5.
【例 9】一列火车 6 时从甲站开出,15 时到达乙站。这列火车平均每小时行 150
要点提示:
把一个长方形剪成最大的
正方形,此时正方形的边长
是长方形的宽。
要点提示:
认真审题,仔细思考是解决此类问
题的关键。
千米,甲、乙两站相距多少千米?
解析:
根据题意可以知道:一列火车 6 时从甲站开出,15 时
到达乙站。这列火车平均每小时行 150 千米,求甲、乙
两站相距的千米数。先求出火车行驶的时间=15 时-6 时
=9 小时;再求出甲、乙两站相距的千米数=150×9.
解答:
150×(15-6)
=150×9
=1350(千米)答:甲、乙两站相距 1350 千米.
【例 10】一桶油,连桶共重 138.4 千克,连桶用去一半后,剩下的油连桶重 75.5
千克,油桶重多少千克?
解析:
要求油桶重多少千克,需要知道油的质量,根据“用去
一半 后,剩下的油连桶重 75.5 千克”可以知道,从原来
的 138.4 千克到 75.5 千克,少了 138.4-75.5=62.9
(千克),也就是一半的油是 62.9 千克,用剩下的油连桶
的重量 75.5 千克减去一半油的重量 62.9 千克,就是油桶的重量;或者求出总共
的油重:62.9+62.9=125.8(千克),再用油连桶的总重量 138.4 减去 125.8,得
出油桶的重量。
解答:
方法一:138.4-75.5=62.9(千克) 75.5-62.9=12.6(千克)
方法二:138.4-75.5=62.9(千克) 62.9+62.9=125.8(千克)
138.4-125.8=12.6(千克)
答:油桶重 12.6 千克.
三年级上册第六单元拔高题-乘法
【例 1】竖式计算。
要点提示:
火车每小时行 150 千米×火
车经过的时间=甲、乙两站
相距的距离。
要点提示:
从不同角度思考问题并解
决是数学中常见的解题思
想。
【例 2】一只烧鹅 36 元,一箱鸡蛋 24 元,妈妈买了 2 只烧鹅和 1 箱鸡蛋,共需
要多少元?
【例 3】学校图书室有 3 个大书架,每个书架有 5 层,每层可放 35 本书,这些
书架一共能放多少本书?
【例 4】阳关小学 4 名老师带领 92 名学生参观科技馆,用 500 元买门票,够吗?
三年级上册第六单元拔高题-乘法
参考答案
【例 1】竖式计算。
解析:
多位数乘一位数的竖式计算方法:一位数与多位数的
个位对齐,从个位乘起,哪一位的积满几十就要向
前一位进几,前一位乘完所得的积要加上进位数。如
计算:243×4。
243×4=972.
解答:
144 768 972 1510 1470 1821.
【例 2】一只烧鹅 36 元,一箱鸡蛋 24 元,妈妈买了 2 只烧鹅和 1 箱鸡蛋,共需
要多少元?
解析:
要求妈妈买了 2 只烧鹅和 1 箱鸡蛋,共需要多少钱,
先求出买 2 只烧鹅需要的总钱数,2×每只烧鹅的钱数
=买 2 只烧鹅需要的总钱数,列式为 36×2;再求共
需要的总钱数,2 只烧鹅的钱数+1 箱鸡蛋的钱数=
共需要的钱数,列式为 36×2+24。
解答:
36×2+24
=72+24
=96(元)答:共需要 96 元.
要点提示:
在计算进位乘法时要注意,哪一位
满几十就要向相邻的高位进几,在
相邻高位乘完后不要忘记加进上
来的数。
要点提示:
用竖式计算多位数乘一位数时,
一位数与哪一位上的数相乘,所
得的积就写在那一位下面。
【例 3】学校图书室有 3 个大书架,每个书架有 5 层,每层可放 35 本书,这些
书架一共能放多少本书?
解析:
先求出大书架共有几层,也就是 3 个 5 相加的和,
列式为 3×5;再求出这些书架一共能放的书的本数,
列式为 3×5×35。
解答:
3×5×35
=15×35
=525(本)答:这些书架一共能放 525 本书.
【例 4】阳关小学 4 名老师带领 92 名学生参观科技馆,用 500 元买门票,够吗?
解析:
分别求出老师和学生买门票需要的钱数,再把两部分门票
钱数合在一起,最后再和 500 元比较,比 500 元少,则够,
否则不够。
解答:
8×4=32(元) 92×5=460(元) 32+460=492(元) 492<500
答:用 500 元买门票,够.
三年级上册第七单元拔高题-年、月、日
【例 1】用 24 时记时法表示下面的时刻。
上午 8 时( ) 中午 12 时( )
下午 1 时 30 分( ) 晚上 10 时 15 分( )
要点提示:
计算连乘混合运算时,按照
从左往右的顺序依次进行
计算。
要点提示:
先求出买票需要的总钱数,
再和 500 元作比较。
【例 2】用 普通记时法表示下面的时刻。
17 时( ) 20 时( )
9 时( ) 11 时 20 分( )
21 时( ) 7 时( )
0 时( ) 15 时 45 分( )
【例 3】电视机厂一个季度生产电视机 600 台,平均每个月生产多少台?
【例 4】科技馆开馆时间如下表,科技馆每天开馆多长时间?
三年级上册第七单元拔高题-年、月、日
参考答案
【例 1】用 24 时记时法表示下面的时刻。
上午 8 时( ) 中午 12 时( )
下午 1 时 30 分( ) 晚上 10 时 15 分( )
解析:
用普通记时法的时刻加 12 就是 24 时记时法。如:
下午 1 时 30 分,用 24 时记时法表示是:1 时 30 分+
12 时=13 时 30 分。
解答:
8 时 12 时 13 时 30 分 22 时 15 分.
【例 2】用 普通记时法表示下面的时刻。
17 时( ) 20 时( )
9 时( ) 11 时 20 分( )
21 时( ) 7 时( )
0 时( ) 15 时 45 分( )
解析:
17 时用普通记时法表示是 17 时-12=5 时,即下午 5 时;
20 时用普通记时法表示是 20 时-12=8 时,即下午 8 时;
9 时用普通记时法是上午 9 时;
11 时 20 分用普通记时法表示是上午 11 时 20 分;
21 时用普通记时法表示是 21 时-12=9 时,即下午 9 时;
7 时用普通记时法表示是上午 7 时;
0 时用普通记时法表示晚上 12 时;
15 时 45 分用普通记时法表示是 15 时 45 分-12=3 时 45 分,即下午 3 时 45 分。
解答:
下午 5 时 下午 8 时 上午 9 时 上午 11 时 20 分
下午 9 时 上午 7 时 晚上 12 时 下午 3 时 45 分.
【例 3】电视机厂一个季度生产电视机 600 台,平均每个月生产多少台?
解析:
求平均每个月生产的电视机的台数,列式为生产电视机
的总数量÷3 个月=平均每个月生产的电视机的台数,即
600÷3。
要点提示:
采用从 0 时到 24 时的记时
方法就是 24 时记时法。
要点提示:
用 24 时记时法的时刻减 12
就是普通记时法。
要点提示:
一个季度是由 3 个月组成
的。
解答:
600÷3=200(台)
答:平均每个月生产 200 台.
【例 4】科技馆开馆时间如下表,科技馆每天开馆多长时间?
解析:
先分别求出科技馆上午和下午开馆时间,再求出科技馆
每天开馆时间。根据科技馆上午开馆时间=上午结束时刻
-开始开馆时刻=11:00-8:30=2 小时 30 分;科技馆下午
开馆时间=下午关馆时刻-开始开馆时刻=17:20-13:30=3 小时 50 分;再把上午
开馆时间加上下午开馆时间就等于科技馆每天开馆时间,列式为 2 小时 30 分+3
小时 50 分。
解答:
11:00-8:30=2 小时 30 分 17:20-13:30=3 小时 50 分
2 小时 30 分+3 小时 50 分=6 小时 20 分
答:科技馆每天开馆 6 小时 20 分.
要点提示:
计算经过的时间时,可以用
结束时刻减去开始时刻。