- 79.23 KB
- 2022-02-10 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1
小学数学图形与几何知识汇总
(一)图形的认识、测量
量的计量
一、长度单位是用来测量物体的长度的。常用的长度单位有:千米、米、分米、厘米、毫米。
二、长度单位:
1 千米=1000 米 1 米=10 分米
1 分米=10 厘米 1 厘米=10 毫米
1 米=100 厘米 1 米=1000 毫米
三、面积单位是用来测量物体的表面或平面图形的大小的。常用面积单位:平方千米、公顷、
平方米、平方分米、平方厘米。
四、测量和计算土地面积,通常用公顷作单位。边长 100 米的正方形土地,面积是 1 公顷。
五、测量和计算大面积的土地,通常用平方千米作单位。边长 1000 米的正方形土地,面积是
1 平方千米。
六、面积单位:(100)
1 平方千米=100 公顷 1 公顷=10000 平方米
1 平方米=100 平方分米 1 平方分米=100 平方厘米
七、体积单位是用来测量物体所占空间的大小的。常用的体积单位有:立方米、立方分米(升)、
立方厘米(毫升)。
八、体积单位:(1000)
1 立方米=1000 立方分米 1 立方分米=1000 立方厘米
1 升=1000 毫升
平面图形【认识、周长、面积】
一、用直尺把两点连接起来,就得到一条线段;把线段的一端无限延长,可以得到一条射线;
把线段的两端无限延长,可以得到一条直线。线段、射线都是直线上的一部分。线段有两个端点,
长度是有限的;射线只有一个端点,直线没有端点,射线和直线都是无限长的。
二、从一点引出两条射线,就组成了一个角。角的大小与两边叉开的大小有关,与边的长短
无关。角的大小的计量单位是(°)。
三、角的分类:小于 90 度的角是锐角;等于 90 度的角是直角;大于 90 度小于 180 度的角是
钝角;等于 180 度的角是平角;等于 360 度的角是周角。
四、相交成直角的两条直线互相垂直;在同一平面不相交的两条直线互相平行。
五、三角形是由三条线段围成的图形。围成三角形的每条线段叫做三角形的边,每两条线段
的交点叫做三角形的顶点。
六、三角形按角分,可以分为锐角三角形、直角三角形和钝角三角形。
按边分,可以分为等边三角形、等腰三角形和任意三角形。
七、三角形的内角和等于 180 度。
八、在一个三角形中,任意两边之和大于第三边。
九、在一个三角形中,最多只有一个直角或最多只有一个钝角。
十、四边形是由四条边围成的图形。常见的特殊四边形有:平行四边形、长方形、正方形、
2
梯形。
十一、圆是一种曲线图形。圆上的任意一点到圆心的距离都相等,这个距离就是圆的半径的
长。通过圆心并且两端都在圆的线段叫做圆的直径。
十二、有一些图形,把它沿着一条直线对折,直线两侧的图形能够完全重合,这样的图形就
是轴对称图形。这条直线叫做对称轴。
十三、围成一个图形的所有边长的总和就是这个图形的周长。
十四、物体的表面或围成的平面图形的大小,叫做它们的面积。
十五、平面图形的面积计算公式推导:
【1】平行四边形面积公式的推导过程
①把平行四边形通过剪切、平移可以转化成一个长方形。
②长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高,长方形的面积等于平
行四边形的面积。
③因为:长方形面积=长×宽,所以:平行四边形面积=底×高。即:S=ah。
【2】三角形面积公式的推导过程
①用两个完全一样的三角形可以拼成一个平行四边形。
②平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,三角形面积等于和它
等底等高的平行四边形面积的一半
③因为:平行四边形面积=底×高,所以:三角形面积=底×高÷2。即:S=ah÷2。
【3】梯形面积公式的推导过程
①用两个完全一样的梯形可以拼成一个平行四边形
②平行四边形的底等于梯形的上底和下底的和,平行四边形的高等于梯形的高,梯形面积等
于平行四边形面积的一半
③因为:平行四边形面积=底×高,所以:梯形面积=(上底+下底)×高÷2。即:S=(a+b)
h÷2。
【4】画图说明圆面积公式的推导过程
①把圆分成若干等份,剪开后,拼成了一个近似的长方形。
②长方形的长相当于圆周长的一半,宽相当于圆的半径。
③因为:长方形面积=长×宽,所以:圆面积=πr×r=πr2。即:S=πr2
十六、平面图形的周长和面积计算公式:
长方形周长 =(长+宽)× 2
长方形面积 = 长 × 宽
正方形周长 = 边长 × 4
正方形面积 = 边长 × 边长
平行四边形面积 = 底 × 高
三角形面积 = 底 × 高 ÷ 2
3
立体图形【认识、周长、面积】
一、长方体、正方体都有 6 个面,12 条棱,8 个顶点。正方体是特殊的长方体。
二、圆柱的特征:一个侧面、两个底面、无数条高。
三、圆锥的特征:一个侧面、一个底面、一个顶点、一条高。
四、表面积:立体图形所有面的面积的和,叫做这个立体图形的表面积。
五、体积:物体所占空间的大小叫做物体的体积。容器所能容纳其它物体的体积叫做容器的
容积。
六、圆柱和圆锥三种关系:
①等底等高:体积 1︰3
②等底等体积:高 1︰3
③等高等体积:底面积 1︰3
七、等底等高的圆柱和圆锥:
①圆锥体积是圆柱的 1/3,
②圆柱体积是圆锥的 3 倍,
③圆锥体积比圆柱少 2/3,
④圆柱体积比圆锥多 2 倍。
八、等底等高的圆柱和圆锥:锥 1、差 2、柱 3、和 4。
九、立体图形公式推导:
【1】圆柱的侧面展开后得到一个什么图形?这个图形的各部分与圆柱有何关系?(圆柱侧面
积公式的推导过程)
①圆柱的侧面展开后一般得到一个长方形。
②长方形的长相当于圆柱的底面周长,长方形的宽相当于圆柱的高。
③因为:长方形面积=长×宽,所以:圆柱侧面积=底面周长×高。
④圆柱的侧面展开后还可能得到一个正方形。
正方形的边长=圆柱的底面周长=圆柱的高。
【2】我们在学习圆柱体积的计算公式时,是把圆柱转化成以前学过的一种立体图形(近似的)
进行推导的,请你说出这种立体图形的名称以及它与圆柱体有关部分之间的关系?
①把圆柱分成若干等份,切开后拼成了一个近似的长方体。
②长方体的底面积等于圆柱的底面积,长方体的高等于圆柱的高。
③因为:长方体体积=底面积×高,所以:圆柱体积=底面积×高。即:V=Sh。
【3】请画图说明圆锥体积公式的推导过程?
①找来等底等高的空圆锥和空圆柱各一只。
②将圆锥装满沙子,倒入圆柱中,发现三次正好装满,将圆柱里的沙子倒入圆锥中,发现三
次正好倒完。
③通过实验发现:圆锥的体积等于和它等底等高的圆柱体积的三分之一;圆柱的体积等于和
它等底等高的圆锥体积的三倍。即:V=1/3Sh。
4
十、立体图形的棱长总和、表面积、体积计算公式:
名称 计算公式
长方体棱长总和 长方体棱长总和 = (长+宽+高)× 4
长方体表面积 长方体表面积=(长×宽+长×高+宽×高)×2
长方体体积 长方体体积=长×宽×高
正方体棱长总和 正方体棱长总和=棱长×12
正方体表面积 正方体表面积=棱长×棱长×6
正方体体积 正方体体积=棱长×棱长×棱长
圆柱体侧面积 圆柱体侧面积=底面周长×高
圆柱体表面积 圆柱体表面积=侧面积+底面积×2
圆柱体体积 圆柱体体积=底面积×高
圆锥体体积 圆锥体体积=
(二)图形与变换
一、变换图形位置的方法有平移、旋转等,在变换位置时,每个图形的相应顶点、线段、曲
线应同步平移,旋转相同的角度。
二、不改变图形的形状,只改变它的大小时,通常要使每个图形的要素,如长方形的长与宽,
三角形的底与高等同时按相同比例放大或缩小。
三、对称图形是对称轴两边的图形经对折后能够完全重合,而不是完全相同。
(三)图形与位置
一、当我们处在实际生活及情景中,面对教短距离时,通常用上、下、前、后来描述具体位
置。
二、当我们面对地图、方位图时,通常用东、西、南、北,南偏东、北偏东……来描述方向。
再结合所示比例尺计算出具体距离,把方向与距离结合起来确定位置。