- 17.82 KB
- 2022-02-11 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1 / 26
小升初数学总复习资料归纳
常用的数量关系式
1、每份数×份数=总数 总数÷每份数=份数 总数÷份数=每份数
2、1 倍数×倍数=几倍数 几倍数÷1 倍数=倍数 几倍数÷倍数= 1 倍数
3、速度×时间=路程 路程÷速度=时间 路程÷时间=速度
4、单价×数量=总价 总价÷单价=数量 总价÷数量=单价
5、工作效率×工作时间=工作总量 工作总量÷工作效率=工作时间 工作总量÷
工作时间=工作效率
6、加数+加数=和 和-一个加数=另一个加数
7、被减数-减数=差 被减数-差=减数 差+减数=被减数
8、因数×因数=积 积÷一个因数=另一个因数
9、被除数÷除数=商 被除数÷商=除数 商×除数=被除数
小学数学图形计算公式
1、正方形 (C:周长 S :面积 a :边长 )
周长=边长× 4 C=4a
面积 =边长×边长 S=a×a
2、正方体 (V: 体积 a: 棱长 )
表面积 =棱长×棱长× 6 S 表 =a×a×6
体积 =棱长×棱长×棱长 V=a×a×a
3、长方形( C:周长 S :面积 a :边长 )
周长 =( 长 +宽 ) ×2 C=2(a+b)
面积 =长×宽 S=ab
4、长方体 (V: 体积 s: 面积 a: 长 b: 宽 h: 高)
(1) 表面积 ( 长×宽 +长×高 +宽×高 ) ×2 S=2(ab+ah+bh)
(2) 体积 =长×宽×高 V=abh
5、三角形 (s:面积 a :底 h :高)
面积 =底×高÷ 2 s=ah ÷2
三角形高 =面积 ×2÷底 三角形底 =面积 ×2÷高
6、平行四边形 ( s:面积 a :底 h :高)
面积 =底×高 s=ah
7、梯形 (s:面积 a :上底 b :下底 h :高)
面积 =(上底 +下底 ) ×高÷ 2 s=(a+b) × h ÷2
8、圆形 (S:面积 C :周长 л d= 直径 r= 半径)
(1) 周长 =直径×л =2×л×半径 C= лd=2лr
(2) 面积 =半径×半径×л
9、圆柱体 (v: 体积 h: 高 s :底面积 r: 底面半径 c: 底面周长)
(1) 侧面积 =底面周长×高 =ch(2 лr 或л d) (2) 表面积 =侧面积 +底面积×2
(3) 体积 =底面积×高 (4)体积=侧面积÷ 2×半径
10、圆锥体 (v: 体积 h: 高 s :底面积 r: 底面半径)
体积 =底面积×高÷ 3
2 / 26
11、总数÷总份数=平均数
12、和差问题的公式
( 和+差 ) ÷2=大数 ( 和-差 ) ÷2=小数
13、和倍问题
和÷ ( 倍数- 1) =小数 小数×倍数=大数 ( 或者 和-小数=大数 )
14、差倍问题
差÷ ( 倍数- 1) =小数 小数×倍数=大数 ( 或 小数+差=大数 )
15、相遇问题
相遇路程=速度和×相遇时间
相遇时间=相遇路程÷速度和
速度和=相遇路程÷相遇时间
16、浓度问题
溶质的重量+溶剂的重量=溶液的重量
溶质的重量÷溶液的重量× 100%=浓度
溶液的重量×浓度=溶质的重量
溶质的重量÷浓度=溶液的重量
17、利润与折扣问题
利润=售出价-成本
利润率=利润÷成本× 100%= ( 售出价÷成本- 1) ×100%
涨跌金额=本金×涨跌百分比
利息=本金×利率×时间
税后利息=本金×利率×时间× (1 - 20%)
常用单位换算
长度单位换算
1 千米 =1000 米 1 米=10 分米 1 分米 =10 厘米 1 米=100 厘米 1 厘米 =10 毫米
面积单位换算
1 平方千米 =100 公顷 1 公顷 =10000 平方米 1 平方米 =100 平方分米
1 平方分米 =100 平方厘米 1 平方厘米 =100 平方毫米
体 (容 )积单位换算
1 立方米 =1000 立方分米 1 立方分米 =1000 立方厘米 1 立方分米 =1 升
1 立方厘米 =1 毫升 1 立方米 =1000 升
重量单位换算
1 吨=1000 千克 1 千克 =1000 克 1 千克 =1 公斤
人民币单位换算
1 元 =10 角 1 角=10 分 1 元 =100 分
时间单位换算
1 世纪 =100 年 1 年=12 月 大月 (31 天 )有:135781012 月 小月 (30 天 )的有 :46911 月
平年 2 月 28 天 , 闰年 2 月 29 天 平年全年 365 天 , 闰年全年 366 天 1 日=24 小时
1 时 =60 分 1 分=60 秒 1 时 =3600 秒
基本概念
3 / 26
第一章 数和数的运算
一 概念
(一)整数
1 整数的意义
自然数和 0 都是整数。
2 自然数
我们在数物体的时候,用来表示物体个数的 1,2,3⋯⋯叫做自然数。
一个物体也没有,用 0 表示。 0 也是自然数。
3 计数单位
一(个)、十、百、千、万、十万、百万、千万、亿⋯⋯都是计数单位。
每相邻两个计数单位之间的进率都是 10。这样的计数法叫做十进制计数法。
4 数位
计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。
5 数的整除
整数 a 除以整数 b(b ≠ 0),除得的商是整数而没有余数,我们就说 a 能被 b 整除,或者说 b
能整除 a 。
如果数 a 能被数 b(b ≠ 0)整除, a 就叫做 b 的倍数, b 就叫做 a 的约数(或 a 的因数) 。倍
数和约数是相互依存的。
因为 35 能被 7 整除,所以 35 是 7 的倍数, 7 是 35 的约数。
一个数的约数的个数是有限的,其中最小的约数是 1,最大的 约数是它本身。例如: 10 的约
数有 1、 2、5、10,其中最小的约数是 1,最大的约数是 10。
一个数的倍数的个数是无限的,其中最小的倍数是它本身。 3 的倍数有: 3、6、9、12⋯⋯其
中最小的倍数是 3 ,没有最大的倍数。
个位上是 0、2、 4、6、8 的数,都能被 2 整除,例如: 202、480、 304,都能被 2 整除。。
个位上是 0 或 5 的数,都能被 5 整除,例如: 5、30、405 都能被 5 整除。。
一个数的各位上的数的和能被 3 整除,这个数就能被 3 整除,例如: 12、108、204 都能被 3
整除。
一个数各位数上的和能被 9 整除,这个数就能被 9 整除。
能被 3 整除的数不一定能被 9 整除,但是能被 9 整除的数一定能被 3 整除。
一个数的末两位数能被 4(或 25)整除, 这个数就能被 4(或 25)整除。 例如: 16、404、1256
都能被 4 整除, 50、325、 500、1675 都能被 25 整除。
一个数的末三位数能被 8(或 125)整除, 这个数就能被 8(或 125)整除。例如: 1168、4600、
5000、12344 都能被 8 整除, 1125、13375、5000 都能被 125 整除。
能被 2 整除的数叫做偶数。
不能被 2 整除的数叫做奇数。
0 也是偶数。自然数按能否被 2 整除的特征可分为奇数和偶数。
一个数, 如果只有 1 和它本身两个约数, 这样的数叫做质数 (或素数) ,100 以内的质数有: 2、
3、5、7、11、13、17、19、 23、29、31、37、41、43、47、53、59、61、 67、71、73、79、
83、 89、97。
一个数,如果除了 1 和它本身还有别的约数,这样的数叫做合数,例如 4、6、8、9、12 都是
合数。
1 不是质数也不是合数, 自然数除了 1 外,不是质数就是合数。 如果把自然数按其约数的个数
的不同分类,可分为质数、合数和 1。
每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合
4 / 26
数的质因数,例如 15=3×5,3 和 5 叫做 15 的质因数。
把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
例如把 28 分解质因数
几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,
例如 12 的约数有 1、2、3、4、6、12;18 的约数有 1、2、3、 6、9、18。其中, 1、2、3、6
是 12 和 1 8 的公约数, 6 是它们的最大公约数。
公约数只有 1 的两个数,叫做互质数,成互质关系的两个数,有下列几种情况:
1 和任何自然数互质。
相邻的两个自然数互质。
两个不同的质数互质。
当合数不是质数的倍数时,这个合数和这个质数互质。
两个合数的公约数只有 1 时,这两个合数互质,如果几个数中任意两个都互质,就说这几个
数两两互质。
如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。
如果两个数是互质数,它们的最大公约数就是 1。
几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,
如 2 的倍数有 2、4、6 、8、10、12、14、16、18 ⋯⋯
3 的倍数有 3、6、9、12、15、18 ⋯⋯ 其中 6、12、18⋯⋯是 2、3 的公倍数, 6 是它们的最
小公倍数。 。
如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。
如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。
几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。
(二)小数
1 小数的意义
把整数 1 平均分成 10 份、 100 份、 1000 份⋯⋯ 得到的十分之几、 百分之几、 千分之几⋯⋯ 可
以用小数表示。
一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几⋯⋯
一个小数由整数部分、小数部分和小数点部分组成。数中的圆点叫做小数点,小数点左边的
数叫做整数部分,小数点左边的数叫做整数部分,小数点右边的数叫做小数部分。
在小数里,每相邻两个计数单位之间的进率都是 10。小数部分的最高分数单位“十分之一”
和整数部分的最低单位“一”之间的进率也是 10。
2 小数的分类
纯小数:整数部分是零的小数,叫做纯小数。例如: 0.25 、 0.368 都是纯小数。
带小数:整数部分不是零的小数,叫做带小数。 例如: 3.25 、 5.26 都是带小数。
有限小数:小数部分的数位是有限的小数,叫做有限小数。 例如: 41.7 、 25.3 、 0.23 都
是有限小数。
无限小数: 小数部分的数位是无限的小数, 叫做无限小数。 例如: 4.33 ⋯⋯ 3.1415926 ⋯⋯
无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不
循环小数。 例如:∏
循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循
环小数。 例如: 3.555 ⋯⋯ 0.0333 ⋯⋯ 12.109109 ⋯⋯
一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。 例如:
3.99 ⋯⋯的循环节是“ 9 ” , 0.5454 ⋯⋯的循环节是“ 54 ” 。
纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。 例如: 3.111 ⋯⋯
5 / 26
0.5656 ⋯⋯
混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。 3.1222 ⋯⋯
0.03333 ⋯⋯
写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、
末位数字上各点一个圆点。如果循环 节只有 一个数字,就只在它的上面点一个点。例如:
3.777 ⋯⋯ 简写作 0.5302302 ⋯⋯ 简写作 。
(三)分数
1 分数的意义
把单位“ 1”平均分成若干份,表示这样的一份或者几份的数叫做分数。
在分数里,中间的横线叫做分数线;分数线下面的数,叫做分母,表示把单位“ 1”平均分成
多少份;分数线下面的数叫做分子,表示有这样的多少份。
把单位“ 1”平均分成若干份,表示其中的一份的数,叫做分数单位。
2 分数的分类
真分数:分子比分母小的分数叫做真分数。真分数小于 1。
假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于 1。
带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。
3 约分和通分
把一个分数化成同它相等但是分子、分母都比较小的分数 ,叫做约分。
分子分母是互质数的分数,叫做最简分数。
把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。
(四)百分数
1 表示一个数是另一个数的百分之几的数 叫做百分数 ,也叫做百分率 或百分比。百分数通常
用"%" 来表示。百分号是表示百分数的符号。
二 方法
(一)数的读法和写法
1. 整数的读法:从高位到低位,一级一级地读。读亿级、万级时,先按照个级的读法去读,
再在后面加一个“亿”或“万”字。每一级末尾的 0 都不读出来,其它数位连续有几个 0 都
只读一个零。
2. 整数的写法:从高位到低位,一级一级地写,哪一个数位上一个单位也没有,就在那个数
位上写 0。
3. 小数的读法:读小数的时候,整数部分按照整数的读法读,小数点读作“点” ,小数部分从
左向右顺次读出每一位数位上的数字。
4. 小数的写法:写小数的时候,整数部分按照整数的写法来写,小数点写在个位右下角,小
数部分顺次写出每一个数位上的数字。
5. 分数的读法:读分数时,先读分母再读“分之”然后读分子,分子和分母按照整数的读法
来读。
6. 分数的写法:先写分数线,再写分母,最后写分子,按照整数的写法来写。
7. 百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法
来读。
8. 百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“ %”来表
示。
(二)数的改写
一个较大的多位数,为了读写方便,常常把它改写成用“万”或“亿”作单位的数。有时还
6 / 26
可以根据需要,省略这个数某一位后面的数,写成近似数。
1. 准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的
数。改写后的数是原数的准确数。 例如把 1254300000 改写成以万做单位的数是 125430 万;
改写成 以亿做单位 的数 12.543 亿。
2. 近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近
似数来表示。 例如: 1302490015 省略亿后面的尾数是 13 亿。
3. 四舍五入法:要省略的尾数的最高位上的数是 4 或者比 4 小,就把尾数去掉;如果尾数的
最高位上的数是 5 或者比 5 大,就把尾数舍去, 并向它的前一位进 1。例如:省略 345900 万
后面的尾数约是 35 万。省略 4725097420 亿后面的尾数约是 47 亿。
4. 大小比较
1. 比较整数大小:比较整数的大小,位数多的那个数就大,如果位数相同,就看最高位,最
高位上的数大,那个数就大;最高位上的数相同,就看下一位,哪一位上的数大那个数就大。
2. 比较小数的大小:先看它们的整数部分, ,整数部分大的那个数就大;整数部分相同的, 十
分位上的数大的那个数就大;十分位上的数也相同的,百分位上的数大的那个数就大⋯⋯
3. 比较分数的大小 :分母相同的分数, 分子大的分数比较大; 分子相同的数, 分母小的分数大。
分数的分母和分子都不相同的,先通分,再比较两个数的大小。
(三)数的互化
1. 小数化成分数:原来有几位小数,就在 1 的后面写几个零作分母,把原来的小数去掉小数
点作分子,能约分的要约分。
2. 分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有
限小数的,一般保留三位小数。
3. 一个最简分数,如果分母中除了 2 和 5 以外,不含有其他的质因数,这个分数就能化成有
限小数;如果分母中含有 2 和 5 以外的质因数,这个分数就不能化成有限小数。
4. 小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。
5. 百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。
6. 分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数 ),再把小数化成
百分数。
7. 百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。
(四)数的整除
1. 把一个合数分解质因数,通常用短除法。先用能整除这个合数的质数去除,一直除到商是
质数为止,再把除数和商写成连乘的形式。
2. 求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只
有公约数 1 为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数 。
3. 求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直
除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最
小公倍数。
4. 成为互质关系的两个数: 1 和任何自然数互质 ; 相邻的两个自然数互质; 当合数不是
质数的倍数时,这个合数和这个质数互质; 两个合数的公约数只有 1 时,这两个合数互质。
(五) 约分和通分
约分的方法:用分子和分母的公约数( 1 除外)去除分子、分母;通常要除到得出最简分数为
止。
通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍
数作分母的分数。
7 / 26
三 性质和规律
(一)商不变的规律
商不变的规律:在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。
(二)小数的性质
小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。
(三)小数点位置的移动引起小数大小的变化
1. 小数点向右移动一位,原来的数就扩大 10 倍;小数点向右移动两位,原来的数就扩大 100
倍;小数点向右移动三位,原来的数就扩大 1000 倍⋯⋯
2. 小数点向左移动一位,原来的数就缩小 10 倍;小数点向左移动两位,原来的数就缩小 100
倍;小数点向左移动三位,原来的数就缩小 1000 倍⋯⋯
3. 小数点向左移或者向右移位数不够时,要用“ 0" 补足位。
(四)分数的基本性质
分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外) ,分数的大小不变。
(五)分数与除法的关系
1. 被除数÷除数 = 被除数 /除数
2. 因为零不能作除数,所以分数的分母不能为零。
3. 被除数 相当于分子,除数相当于分母。
四 运算的意义
(一)整数四则运算
1 整数加法:
把两个数合并成一个数的运算叫做加法。
在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。
加数 +加数 =和 一个加数 =和-另一个加数
2 整数减法:
已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。
在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,
减数和差分别是部分数。
加法和减法互为逆运算。
3 整数乘法:
求几个相同加数的和的简便运算叫做乘法。
在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。
在乘法里, 0 和任何数相乘都得 0. 1 和任何数相乘都的任何数。
一个因数× 一个因数 =积 一个因数 =积÷另一个因数
4 整数除法:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。
在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。
乘法和除法互为逆运算。
在除法里, 0 不能做除数。因为 0 和任何数相乘都得 0,所以任何一个数除以 0,均得不到一
个确定的商。
被除数÷除数 =商 除数 =被除数÷商 被除数 =商×除数
(二)小数四则运算
1. 小数加法:
8 / 26
小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。
2. 小数减法:
小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加
数的运算 .
3. 小数乘法:
小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯
小数的意义是求这个数的十分之几、百分之几、千分之几⋯⋯是多少。
4. 小数除法:
小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个
因数的运算。
5. 乘方 :
求几个相同因数的积的运算叫做乘方。例如 3 × 3 =32
(三)分数四则运算
1. 分数加法:
分数加法的意义与整数加法的意义相同。 是把两个数合并成一个数的运算。
2. 分数减法:
分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加
数的运算。
3. 分数乘法:
分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。
4. 乘积是 1 的两个数叫做互为倒数。
5. 分数除法:
分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个
因数的运算。
(四)运算定律
1. 加法交换律:
两个数相加,交换加数的位置,它们的和不变,即 a+b=b+a 。
2. 加法结合律:
三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数
相加它们的和不变,即( a+b)+c=a+(b+c) 。
3. 乘法交换律:
两个数相乘,交换因数的位置它们的积不变,即 a×b=b×a。
4. 乘法结合律:
三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数
相乘,它们的积不变,即 (a×b)×c=a×(b×c) 。
5. 乘法分配律:
两个数的和与一个数相乘, 可以把两个加数分别与这个数相乘再把两个积相加, 即(a+b)×c=a
×c+b×c 。
6. 减法的性质:
从一个数里连续减去几个数, 可以从这个数里减去所有减数的和, 差不变, 即 a-b-c=a-(b+c) 。
(五)运算法则
1. 整数加法计算法则:
相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。
2. 整数减法计算法则: