- 77.84 KB
- 2022-04-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
湖南省师大附中2019届高考数学模拟卷(二)理时量:120分钟 满分:150分一、选择题:本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x|x=+,k∈Z},N={x|x=+,k∈Z},则(C) A.M=NB.MNC.NMD.M∩N=2.若复数z=(1-ai)(a+2i)在复平面内对应的点在第一象限,其中a∈R,i为虚数单位,则实数a取值范围是(A)A.(0,)B.(,+∞)C.(-∞,-)D.(-,0)3.如果等差数列a1,a2,…,a8的各项都大于零,公差d≠0,则(B)A.a1+a8>a4+a5B.a1a8<a4a5C.a1+a8<a4+a5D.a1a8>a4a5【解析】由a1+a8=a4+a5,∴排除A、C.又a1·a8=a1(a1+7d)=a+7a1d,∴a4·a5=(a1+3d)(a1+4d)=a+7a1d+12d2>a1·a8,故选B.4.若函数y=cos(ω∈N*)图象的一个对称中心是,则ω的最小值为(B)A.1B.2C.4D.8【解析】由题知+=kπ+(k∈Z)ω=6k+2(k∈Z),故ωmin=2.5.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如图所示,其中支出在[50,60)元的同学有30人,则n的值为(A)A.100B.1000C.90D.900【解析】支出在[50,60)元的频率为1-(0.1+0.24+0.36)=0.3.∴样本容量n==100.6.已知一个几何体的三视图如图所示(正方形的边长为1),则该几何体的体积为(B)nA.B.C.D.【解析】由题意可知几何体的形状如图,是长方体中截出的棱锥(底面是梯形,高为,底面梯形下底边长为1,上底边长为,高为1)的剩余部分,所以几何体的体积为:1-××××1=,故选B.7.我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数可以表示为两个素数的和”,在不超过20的素数中,随机选取两个不同的数,其和等于20的概率是(D)A.B.C.D.【解析】在不超过20的素数中有2,3,5,7,11,13,17,19共8个,随机选取两个不同的数共有C=28种,随机选取两个不同的数,其和等于20有2种,故可得随机选取两个不同的数,其和等于20的概率P=,故选D.8.下列图象可以作为函数f(x)=的图象有(C)A.1个B.2个C.3个D.4个【解析】当a<0时,如取a=-4,则f(x)=,其定义域为:{x|x≠±2},它是奇函数,图象是(3),所以(3)是正确的;当a>0时,如取a=1,则f(x)=,其定义域为nR,它是奇函数,图象是(2),所以(2)是正确的;当a=0时,则f(x)=,其定义域为:{x|x≠0},它是奇函数,图象是(4),所以(4)正确.故选C.9.已知点集M=,则平面直角坐标系中区域M的面积是(D)A.1B.3+C.πD.2+【解析】当xy≤0时,只需要满足x2≤1,y2≤1即可;当xy>0时,对不等式两边平方整理得到x2+y2≤1,所以区域M如下图.易知其面积为2+.10.已知向量a=,b=(0,5)的起点均为原点,而终点依次对应点A,B,线段AB边上的点P,若⊥,=xa+yb,则x,y的值分别为(C)A.,B.,-C.,D.-,【解析】=xa+yb=x+y(0,5)=,=b-a=,∵⊥,∴-x+25y=0x=4y,①又∵A,B,P三点共线,∴x+y=1,②由①②得x=,y=.故选C.11.如图,在长方体ABCD-A1B1C1D1中,==,=1,而对角线A1B上存在一点P,使得+取得最小值,则此最小值为(D)A.2B.3C.1+D.【解析】把对角面A1BCD1绕A1B旋转到与△AA1B在同一平面上的位置,连接AD1,n在△AA1D1中,|AA1|=1,|A1D1|=,∠AA1D1=∠AA1B+90°=150°,则|AP|+|D1P|的最小值为:AD1==,故选D.12.已知a>0,函数f(x)=ex-a-ln(x+a)-1(x>0)的最小值为0,则实数a的取值范围是(C)A.B.C.D.【解析】由题意知f(a)=ea-a-ln(a+a)-1≥0,即00不符合题意,舍去;②当a=时,f(x)=ex--ln-1≥--1=0.则a=,故选C.二、填空题:本大题共4个小题,每小题5分,满分20分.请把答案填在答题卷对应题号后的横线上.13.定积分(ex-e-x)dx=__0__.14.(x-y)(x+y)8的展开式中x2y7的系数为__-20__.(用数字填写答案)【解析】(x+y)8中,Tr+1=Cx8-ryr,令r=7,再令r=6,得x2y7的系数为C-C=8-28=-20.15.已知椭圆C1:+=1(a>b>0)与双曲线C2:x2-y2=4有相同的右焦点F2,点P是椭圆C1和双曲线C2的一个公共点,若=2,则椭圆C1的离心率为____.【解析】设另一个焦点是F1,由双曲线的定义可知-=4,=6,2a=8,a=4,c=2,故e===.16.已知数列,均为等差数列,且a1b1=m,a2b2=4,a3b3=8,a4b4=16,则m=__4__.【解析】设an=an+b,bn=cn+d,则anbn==acn2+(bc+ad)n+bd,令cn=anbn,则dn=cn+1-cn=2acn+(ac+ad+bc)构成一个等差数列,故由已给出的a2b2=4,a3b3=8,a4b4=16,可求得m=4.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17.(本题满分12分)已知在△ABC中,D,E分别为边AB,BC的中点,2·=·,(1)若2·=·,且△ABC的面积为3,求边AC的长;n(2)若BC=,求线段AE长的最大值.【解析】设BC=a,AC=b,AB=c,由2·=·,得2bccosA=bc,所以cosA=,又A∈(0,π),因此A=.2分(1)由2·=·,即2·=·(+),得3bc=c2,即3b=c.又因为S△ABC=bcsinA=b2=3,所以b=2,即边AC的长为2.7分(2)因为E为边BC的中点,所以=(+),即2=(+)2=(b2+c2+bc),9分又因为BC=,所以由余弦定理得a2=b2+c2-2bc·cosA,即b2+c2=a2+bc=3+bc≥2bc,即bc≤3,所以2=(3+2bc)≤,≤,当且仅当b=c时取等号,所以线段AE长的最大值为.12分18.(本题满分12分)如图1,四边形ABCD为直角梯形,AD∥BC,AD⊥AB,AD=1,BC=2,E为CD上一点,F为BE的中点,且DE=1,EC=2,现将梯形沿BE折叠(如图2),使平面BCE⊥平面ABED.(1)求证:平面ACE⊥平面BCE;(2)能否在边AB上找到一点P(端点除外)使平面ACE与平面PCF所成角的余弦值为?若存在,试确定点P的位置,若不存在,请说明理由.【解析】(1)在直角梯形ABCD中,作于DM⊥BC于M,连接AE,则CM=2-1=1,CD=DE+CE=1+2=3,则DM=AB=2,cosC=,2分则BE==,sin∠CDM=,n则AE==,∴AE2+BE2=AB2,4分故AE⊥BE,且折叠后AE与BE位置关系不变,又∵平面BCE⊥平面ABED,且平面BCE∩平面ABED=BE,∴AE⊥平面BCE,∵AE平面ACE,∴平面ACE⊥平面BCE.6分(2)∵在△BCE中,BC=CE=2,F为BE的中点,∴CF⊥BE.又∵平面BCE⊥平面ABED,且平面BCE∩平面ABED=BE,∴CF⊥平面ABED,7分故可以F为坐标原点建立如图所示的空间直角坐标系,则A,C,E,易求得平面ACE的法向量为m=(0,-,1).假设在AB上存在一点P使平面ACE与平面PCF所成角的余弦值为,且=λ,(λ∈R),∵B,∴=,故=,又=,∴=,又=,设平面PCF的法向量为n=(x,y,z),∴令x=2λ-1得n=(2λ-1,(λ-1),0),n∴|cosm,n|==,11分解得λ=,因此存在点P且P为线段AB中点时使得平面ACE与平面PCF所成角的余弦值为.12分19.(本题满分12分)近期,某市公交公司推出扫码支付1分钱乘车活动,活动设置了一段时间的推广期,由于推广期内优惠力度较大,吸引越来越多的人开始使用扫码支付.629路公交车统计了活动刚推出一周内每一天使用扫码支付的人次,用x表示活动推出的天数,y表示每天使用扫码支付的人次(单位:十人次),统计数据如表1所示:表1:x1234567y611213466101196根据以上数据,绘制了散点图.(1)根据散点图判断,在推广期内,y=a+bx与y=c·dx(c,d均为大于零的常数)哪一个适宜作为扫码支付的人次y关于活动推出天数x的回归方程类型(给出判断即可,不必说明理由);(2)根据(1)的判断结果及表1中的数据,建立y关于x的回归方程,并预测活动推出第8天使用扫码支付的人次;(3)推广期结束后,车队对乘客的支付方式进行统计,结果如下支付方式现金乘车卡扫码比例10%60%30%车队为缓解周边居民出行压力,以80万元的单价购进了一批新车,根据以往的经验可知,每辆车每个月的运营成本约为0.66万元.已知该线路公交车票价为2元,使用现金支付的乘客无优惠,使用乘车卡支付的乘客享受8折优惠,扫码支付的乘客随机优惠,根据统计结果得知,使用扫码支付的乘客中有的概率享受7折优惠,有的概率享受8折优惠,有的概率享受9折优惠.预计该车队每辆车每个月有1万人次乘车,根据所给数据以事件发生的频率作为相应事件发生的概率,在不考虑其它因素的条件下,按照上述收费标准,假设这批车需要n(n∈N*)年才能开始盈利,求n的值.参考数据:xiyixivi100.5462.141.54253550.123.47n其中vi=lgyi,=i.参考公式:对于一组数据(u1,v1),(u2,v2),…,(un,vn),其回归直线=+u的斜率和截距的最小二乘估计公式分别为:==0.25,5分把样本中心点(4,1.54)代入v=lgc+lgd·x,得lgc=0.54,∴=0.54+0.25x,∴lg=0.54+0.25x,6分∴y关于x的回归方程式:=100.54+0.25x=100.54(100.25)x=3.47(100.25)x,把x=8代入上式:∴=100.54+0.25×8=102.54=102×100.54=347,所以活动推出第8天使用扫码支付的人次为3470.7分(3)记一名乘客乘车支付的费用为Z,则Z的取值可能为:2,1.8,1.6,1.4,P(Z=2)=0.1,P(Z=1.8)=0.3×=0.15,P(Z=1.6)=0.6+0.3×=0.7,P(Z=1.4)=0.3×=0.05,所以一名乘客一次乘车的平均费用为:2×0.1+1.8×0.5+1.6×0.7+1.4×0.05=1.66(元),10分由题意可知:1.66×1×12·n-0.66×12·n-80>0,n>,所以n取7,估计这批车大概需要7年才能开始盈利.12分20.(本题满分12分)已知椭圆C:+=1(a>b>0)的离心率e=,以上顶点和右焦点为直径端点的圆与直线x+y-2=0相切.(1)求椭圆C的标准方程;(2)是否存在斜率为2的直线,使得当直线与椭圆C有两个不同的交点M,N时,能在直线y=上找到一点P,在椭圆C上找到一点Q,满足=?若存在,求出直线的方程;若不存在,说明理由.【解析】(1)由椭圆的离心率e=,得==,得b=c.上顶点为(0,b),右焦点为(b,0),以上顶点和右焦点为直径端点的圆的方程为+==,∴=b,即|b-2|=b,得b=c=1,a=,∴椭圆的标准方程为+y2=1.5分n(2)椭圆C上不存在这样的点Q,理由如下:设直线的方程为y=2x+t,设M(x1,y1),N(x2,y2),P,Q(x4,y4),MN的中点为D(x0,y0),由消去x,得9y2-2ty+t2-8=0,所以y1+y2=,且Δ=4t2-36(t2-8)>0,7分故y0==,且-3<t<3.由=,得=(x4-x2,y4-y2),所以有y1-=y4-y2,y4=y1+y2-=t-.9分(也可由=知四边形PMQN为平行四边形,而D为线段MN的中点,因此,D也为线段PQ的中点,所以y0==,可得y4=.)又-3<t<3,所以-<y4<-1,11分与椭圆上点的纵坐标的取值范围是[-1,1]矛盾.故椭圆C上不存在这样的点Q.12分21.(本题满分12分)已知函数f(x)=lnx,g(x)=ex.(1)设函数h(x)=f(x)+x2+ax(a∈R),讨论h(x)的极值点个数;(2)设直线l为函数f(x)的图象上一点A(x0,f(x0))处的切线,试探究:在区间(1,+∞)上是否存在唯一的x0,使得直线l与曲线y=g(x)相切.【解析】由题意得h′(x)=+x+a=(x>0),令Δ=a2-4,1分①当Δ=a2-4≤0即-2≤a≤2时,h′(x)=≥0在x∈(0,+∞)上恒成立,此时h(x)在x∈(0,+∞)上单调递增,极值点个数为0;2分②当a>2时,h′(x)=≥0在x∈(0,+∞)上恒成立,此时h(x)在x∈(0,+∞)上单调递增,极值点个数为0;3分③当a<-2时,Δ>0,设x1,x2是x2+ax+1=0的两根,则x1+x2=-a>0,x1x2=1>0,故x1>0,x2>0,此时h(x)在(0,+∞)上有两个极值点.5分综上所述,当a<-2时,h(x)有两个极值点,a≥-2时,h(x)没有极值点.6分(2)∵f′(x)=,∴f′(x0)=,∴切线l的方程为y-lnx0=(x-x0),即y=x+lnx0-1.7分n设直线l与曲线y=g(x)相切于(x1,ex1),∵g′(x)=ex,∴ex1=即x1=-lnx0,∴g(x1)=ex1=e-lnx0=,∴直线l的方程也为y-=(x+lnx0),即y=x++,8分∴lnx0-1=+,即lnx0=.9分下证:在区间(1,+∞)上x0存在且唯一.设φ(x)=lnx-(x>1),φ′(x)=-=+>0,则φ(x)在(1,+∞)上单调递增.10分又φ(e)=lne-=<0,φ(e2)=lne2-=>0,由零点存在性定理知:存在x0∈(e,e2),使得φ(x0)=0,即lnx0=.故在区间(1,+∞)上存在唯一的x0,使得直线l与曲线y=g(x)相切.12分(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.(本题满分10分)选修4-4:极坐标与参数方程在平面直角坐标系中,将曲线C1向左平移2个单位,再将得到的曲线上的每一个点的横坐标保持不变,纵坐标缩短为原来的,得到曲线C2,以坐标原点O为极点,x轴的正半轴为极轴,建立极坐标系,C1的极坐标方程为ρ=4cosα.(1)求曲线C2的参数方程;(2)直线l的参数方程为(t为参数),求曲线C2上到直线l的距离最短的点的直角坐标.【解析】(1)由ρ=4cosα得ρ2=4ρcosα将ρ2=x2+y2,ρ·cosα=x代入整理得曲线C1的普通方程为(x-2)2+y2=4,2分设曲线C1上的点为(x′,y′),变换后的点为(x,y),由题可知坐标变换为即代入曲线C1的普通方程,整理得曲线C2的普通方程为+y2=1,4分∴曲线C2的参数方程为(θ为参数).5分n(2)直线l的参数方程为(t为参数),直线l的直角坐标方程为x-y+2=0,设曲线C2上的点为P(2cosθ,sinθ),0≤θ≤2π,则点P到直线l的距离为d==,其中cosφ=,sinφ=,当θ+φ=π时,dmin==,8分此时2cosθ=2cos(π-φ)=-=-,sinθ=sin(π-φ)==,即此时点P的直角坐标为,所以曲线C2上到直线l的距离最短的点的直角坐标为.10分23.(本题满分10分)选修4-5:不等式选讲设f(x)=|x-1|+|x+1|.(1)求f(x)≤x+2的解集;(2)若不等式f(x)≥对任意实数a≠0恒成立,求实数x的取值范围.【解析】(1)由f(x)≤x+2得:或或3分解得0≤x≤2,∴f(x)≤x+2的解集为{x|0≤x≤2}.5分(2)=≤=3,当且仅当≤0时,取等号.7分由不等式f(x)≥对任意实数a≠0恒成立,可得|x-1|+|x+1|≥3,解得x≤-或x≥.故实数x的取值范围是∪.10分