- 819.34 KB
- 2022-04-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
广东省佛山一中、珠海一中、金山中学2018-2019学年高二数学下学期期中试题文一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)⒈设集合,,则()A.B.C.D.⒉已知复数,则的共轭复数是()A.B.C.D.⒊设、分别为双曲线的左右焦点,点为左支上一点,且,则的值为()A.1B.2C.5D.6⒋角A是△ABC的一个内角,若命题p:A<,命题q:sinA<,则p是q的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件⒌如右图是某个几何体的三视图,则这个几何体体积是()A.B.C.D.⒍已知满足约束条件,则的最大值为()A.1B.2C.3D.4⒎已知椭圆的上下顶点分别为A,B,右顶点为C,右焦点为,若,则该椭圆的离心率为()nA.B.C.D.⒏执行如下图所示的程序框图,若输出k的值为5,则判断框内可填入的条件是()A.B.C.D.9.函数在上的图象大致为()A.B.C.D.10.对于大于的自然数的三次幂可用奇数进行以下方式的“分裂”,,,…,仿此,若的“分裂数”中有一个是59,则n的值为()A.6B.7C.8D.9⒒如右图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O.E,F,G,H为圆O上的点,△ABE,△BCF,△CDG,△ADH分别是以AB,BC,CD,DA为底边的等腰三角形.沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起△ABE,△BCF,△CDG,△ADH,使得E,F,G,H重合得到一个四棱锥.当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的表面积为()A.B.C.D.⒓若存在唯一的正整数,使关于的不等式成立,则实数的取值范围是()A.B.C.D.二.填空题(本大题共4小题,每小题5分,满分20分)13.已知函数(为自然对数的底数),且函数在点处的切线斜率为1,则_______14.等差数列的公差为,若,,成等比数列,则数列的前项和=_______⒖直线与圆相交于两点,若,则实数的取值范围是.16.在中,角的对边分别为,若,且的面积,则的最小值为_______三、解答题:本大题共6小题,满分80分,解答应写出文字说明、证明过程或演算步骤.17.(本小题满分12分)为数列的前项和,已知,且.(1)求证:为等差数列;n(2)设,求数列的前项和.18.(本小题满分12分)某手机厂商推出一款吋大屏手机,现对名该手机使用者(名女性,名男性)进行调查,对手机进行打分,打分的频数分布表如下:女性用户:分值区间频数男性用户:分值区间频数⑴男性用户的频率分布直方图如右下图,请完成女性用户的频率分布直方图,并比较女性用户和男性用户评分的波动大小(不要求计算具体值,给出结论即可);女性用户男性用户⑵如果评分不低于分,就表示该用户对手机“认可”,否则就表示“不认可”,完成下列列联表,并回答是否有的把握认为性别和对手机的“认可”有关;女性用户男性用户合计“认可”手机“不认可”手机合计5000.150.100.050.0250.0102.0722.7063.8415.0246.635附:,其中.n19.(本小题满分12分)如右图,是圆的直径,是圆上除、外的一点,平面,四边形为平行四边形,,.⑴求证:平面;⑵当三棱锥体积取最大值时,求此刻点到平面的距离.⒛(本小题满分12分)已知抛物线:的焦点为点在该抛物线上,且.⑴求抛物线的方程;⑵直线与轴交于点E,与抛物线相交于,两点,自点,分别向直线作垂线,垂足分别为,记的面积分别为.试证明:为定值.21.(本小题满分12分)已知函数,.⑴求函数的单调区间;⑵是否存在实数,使得函数的极值大于?若存在,求的取值范围;若不存在,请说明理由.请考生从第22、23两题中任选一题作答。注意:只能做所选定的题目。如果多做,则按所做的第一个题目计分,作答时请用2B铅笔在答题卡上将所选题号后的方框涂黑。22.(本小题满分10分)选修4—4:坐标系与参数方程在直角坐标系中,以原点为极点,轴的正半轴为极轴,建立极坐标系.已知曲线:(为参数),:(为参数).(1)化,的方程为普通方程,并说明它们分别表示什么曲线;(2)直线的极坐标方程为,若上的点对应的参数为,为上的动点,求线段的中点到直线距离的最小值.23.(本小题满分10分)选修:不等式选讲已知函数的解集为.(1)求的值;n(2)若,使得成立,求实数的取值范围.2017级高二下学期期中佛山一中、珠海一中、金山中学三校联考文科数学参考答案1-12:CCDAADDBBCDB13.;14.;15.;16..317.(1),①当时,②…………2分②-①得,…………3分即,…………4分∵,∴…………5分即,∴为等差数列…………6分(2)由已知得,即…………7分解得(舍)或…………8分∴…………9分∴…………10分∴…………11分…………12分n18.解:⑴女性用户和男性用户的频率分布表分别如下左、右图:女性用户男性用户…………3分由图可得女性用户的波动小,男性用户的波动大.…………5分⑵列联表如下图:女性用户男性用户合计“认可”手机140180320“不认可”手机60120180合计200300500…………7分,…………9分又0.05且5.208>3.841…………10分所以有的把握认为性别和对手机的“认可”有关.…………12分19.解:⑴是圆直径,是圆上除、外的一点…………1分平面,…………2分又,平面…………3分又四边形为平行四边形,…………4分平面…………5分⑵由⑴知为三棱锥的高平面…………6分又四边形为平行四边形.n…………7分,,…………8分等号当且仅当时成立…………9分,此时,,…………10分设点到平面的距离为,则…………12分.20.解:⑴抛物线焦点为准线方程为…………1分点在该抛物线上①…………2分依定义及得②…………3分由①②解得抛物线的方程为…………4分⑵由消得…………5分设,则…………6分则…………7分…………9分n又…………10分…………11分…………12分21.解:⑴函数的定义域为.…………1分①当时,,∵∴∴函数单调递增区间为.…………2分②当时,令得,.(ⅰ)当,即时,,∴函数的单调递增区间为.…………3分(ⅱ)当,即时,方程的两个实根分别为,.若,则,此时,当时,.∴函数的单调递增区间为,…………4分若,则,此时,当时,,单调递增当时,单调递减…………5分综上,当时,函数的单调递增区间为单调递减区间为n;当时,函数的单调递增区间为.…………6分⑵解:由(1)得当时,函数在上单调递增,故函数无极值;…………7分当时,函数的单调递增区间为,单调递减区间为;则有极大值,其值为,…………8分其中.而,∴…………9分设函数,则,则在上为增函数.又,故等价于.因而等价于.…………10分即在时,方程的大根大于1,设,由于的图象是开口向下的抛物线,且经过点(0,1),对称轴,则只需,即解得,而,故实数的取值范围为.…………12分22.解:(1),为圆心是,半径是的圆.…………3分为中心在坐标原点,焦点在轴上,长半轴长是,短半轴长是的椭圆.……………4分n(2)当时,,……………5分设则,为直线,…………7分到的距离从而当时,取得最小值…………10分23.解:,所以,,或,…………2分又的解集为.故.…………4分等价于不等式,…………5分,…………7分故,…………8分则有,即,解得或即实数的取值范围…………10分n