- 1.07 MB
- 2022-04-13 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
近代物理初步考纲要求考情分析光电效应Ⅰ放射性同位素Ⅰ1.命题规律高考对该部分内容多为单独考查,有时与电磁学或动量知识进行简单交汇命题。题型一般为选择题,难度中等。2.考查热点该部分内容知识点较多,考查热点有光电效应、原子的跃迁、原子核的衰变、核反应及核能的计算等。原子物理属于前沿科学知识,复习时应侧重对基本概念和规律的理解和应用。爱因斯坦光电效应方程Ⅰ核力、核反应方程Ⅰ氢原子光谱Ⅰ结合能、质量亏损Ⅰ氢原子的能级结构、能级公式Ⅰ裂变反应和聚变反应、裂变反应堆Ⅰ原子核的组成、放射性、原子核的衰变、半衰期Ⅰ射线的危害与防护Ⅰ第72课时 波粒二象性(双基落实课)点点通(一) 对光电效应的理解1.光电效应现象在光的照射下,金属中的电子从表面逸出的现象。发射出来的电子叫光电子。2.光电效应的产生条件入射光的频率大于金属的极限频率。3.光电效应的三大规律光电子的最大初动能随着入射光频率的增大而增大,与入射光强度无关电子吸收光子能量后,一部分克服阻碍作用做功,剩余部分转化为光电子的初动能,只有直接从金属表面飞出的光电子才具有最大初动能,对于确定的金属,逸出功W0是一定的,故光电子的最大初动能只随入射光的频率增大而增大,与入射光强度无关光电效应具有瞬时性光照射金属时,电子吸收一个光子的能量后,动能立即增大,不需要能量积累的过程光较强时饱和电流大光较强时,包含的光子数较多,照射金属时产生的光电子较多,因而饱和电流较大n[小题练通]1.(多选)(人教教材演示实验改编题)如图所示,用导线把验电器与锌板相连接,当用紫外线照射锌板时,发生的现象是( )A.有光子从锌板逸出B.有电子从锌板逸出C.验电器指针张开一个角度D.锌板带负电解析:选BC 当用紫外线照射锌板时,发生光电效应,有电子从锌板逸出,锌板带正电,验电器指针张开一个角度,故B、C正确。2.(多选)如图所示,电路中所有元件完好,但当光照射到光电管上的金属材料上时,灵敏电流计中没有电流通过,其原因可能是( )A.入射光太弱B.入射光的波长太长C.光照时间短D.电源正、负极接反解析:选BD 若入射光的频率小于极限频率,则没有光电子逸出,入射光的波长越长,频率越小;若所加反向电压大于遏止电压,则电子就不能到达阳极,也不会有光电流,故B、D正确。3.(粤教教材原题)用某种色光照射到金属表面时,金属表面有光电子飞出,如果光的强度减弱而频率不变,则( )A.光的强度减弱到某一最低数值时,就没有光电子飞出B.单位时间内飞出的光电子数目减少C.逸出的光电子的最大初动能减小D.单位时间内逸出的光电子数目和最大初动能都减小解析:选B 光的强度减弱而频率不变,则仍有光电子飞出,只是单位时间内飞出的光电子数目减少,而光电子的最大初动能与光的频率有关,频率不变最大初动能不变,故B正确。4.(多选)如图所示,是工业生产中大部分光电控制设备(如夜亮昼熄的路灯)用到的光控继电器的示意图,它由电源、光电管、放大器、电磁继电器等几部分组成。当用绿光照射光电管阴极K时,可以发生光电效应,则下列说法中正确的是( )nA.增大绿光照射强度,光电子最大初动能增大B.增大绿光照射强度,电路中的光电流增大C.改用波长比绿光波长大的光照射光电管阴极K时,电路中一定有光电流D.改用频率比绿光频率大的光照射光电管阴极K时,电路中一定有光电流解析:选BD 增大绿光照射强度,光电子最大初动能不变,而光电流增大,A错误,B正确;改用频率大的光照射,入射光频率一定大于极限频率,则一定有光电流,D正确;光的波长越大频率越小,改用波长大的光照射,入射光频率不一定大于极限频率,则不一定有光电流,C错误。[融会贯通](1)光电子的最大初动能取决于入射光的频率。(2)单位时间内逸出的光电子数取决于入射光的强弱。点点通(二) 爱因斯坦的光电效应方程及应用1.光子说:在空间传播的光不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε=hν。2.逸出功W0:电子从金属中逸出所需做功的最小值。3.最大初动能:发生光电效应时,金属表面上的电子吸收光子后克服原子核的引力逸出时所具有的动能的最大值。4.光电效应方程(1)表达式:Ek=hν-W0。(2)物理意义:金属表面的电子吸收一个光子获得的能量是hν,这些能量的一部分用来克服金属的逸出功W0,剩下的表现为逸出后电子的最大初动能Ek。5.光电效应的四类图像图像名称图线形状由图线直接(间接)得到的物理量最大初动能Ek与入射光频率ν的关系图线①极限频率:图线与ν轴交点的横坐标νc②逸出功:图线与Ek轴交点的纵坐标的绝对值W0=|-E|=E③普朗克常量:图线的斜率k=h颜色相同、强度不同的光,光电流与电压的关系①遏止电压Uc:图线与横轴的交点②饱和光电流Imn:电流的最大值③最大初动能:Ek=eUc颜色不同时,光电流与电压的关系①遏止电压Uc1、Uc2②饱和光电流③最大初动能Ek1=eUc1,Ek2=eUc2遏止电压Uc与入射光频率ν的关系图线①极限频率νc:图线与横轴的交点②遏止电压Uc:随入射光频率的增大而增大③普朗克常量h:等于图线的斜率与电子电荷量的乘积,即h=ke(注:此时两极之间接反向电压)[小题练通]1.(2018·全国卷Ⅱ)用波长为300nm的光照射锌板,电子逸出锌板表面的最大初动能为1.28×10-19J。已知普朗克常量为6.63×10-34J·s,真空中的光速为3.00×108m·s-1。能使锌产生光电效应的单色光的最低频率约为( )A.1×1014Hz B.8×1014HzC.2×1015HzD.8×1015Hz解析:选B 设单色光的最低频率为ν0,由爱因斯坦光电效应方程得Ek=hν1-W0,0=hν0-W0,又ν1=,整理得ν0=-,代入数据解得ν0≈8×1014Hz,B正确。2.(多选)(人教教材改编题)在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是( )A.增大入射光的强度,光电流增大B.减小入射光的强度,光电效应现象消失C.改用频率小于ν的光照射,一定不发生光电效应D.改用频率大于ν的光照射,光电子的最大初动能增大解析:选AD 增大入射光的强度,单位时间内照射到单位面积上的光子数目增加,则光电流将增大,故选项A正确;光电效应是否发生取决于入射光的频率,而与入射光强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,故选项C错误;根据hν-W逸=nmv2可知,增大入射光频率,光电子的最大初动能也增大,故选项D正确。3.(多选)(2017·全国卷Ⅲ)在光电效应实验中,分别用频率为νa、νb的单色光a、b照射到同种金属上,测得相应的遏止电压分别为Ua和Ub、光电子的最大初动能分别为Eka和Ekb。h为普朗克常量。下列说法正确的是( )A.若νa>νb,则一定有Uaνb,则一定有Eka>EkbC.若Uaνb,则一定有hνa-Eka>hνb-Ekb解析:选BC 设该金属的逸出功为W0,根据爱因斯坦光电效应方程有Ek=hν-W0,同种金属的W0不变,则逸出光电子的最大初动能随ν的增大而增大,B项正确;又Ek=eU,则最大初动能与遏止电压成正比,C项正确;根据上述有eU=hν-W0,遏止电压U随ν增大而增大,A项错误;又有hν-Ek=W0,W0相同,D项错误。4.(多选)(沪科教材原题)在演示光电效应的实验中,某金属被光照射后产生了光电效应现象,实验测出了光电子的最大动能Ekm与入射光频率ν的关系,如图所示。由Ekmν图像可求出( )A.该金属的逸出功B.该金属的极限频率C.单位时间内逸出的光电子数D.普朗克常量解析:选ABD 根据光电效应方程Ekm=hν-W0=hν-hν0知,图线的斜率表示普朗克常量,根据图线斜率可得出普朗克常量。横轴截距表示最大初动能为零时的入射光频率,此时的频率等于金属的极限频率,根据W0=hν0可求出逸出功。单位时间内逸出的光电子数无法从图像中获知。故A、B、D正确,C错误。5.(多选)在某次光电效应实验中,得到的遏止电压Uc与入射光的频率ν的关系如图所示,若该直线的斜率和纵截距分别为k和-b,电子电荷量的绝对值为e,则( )A.普朗克常量可表示为B.若更换材料再实验,得到的图线的k不改变,b改变C.所用材料的逸出功可表示为ebD.b由入射光决定,与所用材料无关解析:选BC 根据光电效应方程Ekm=hν-W0,以及Ekm=eUc,得:Uc=-,图线n的斜率k=,解得普朗克常量h=ke,故A错误;纵轴截距的绝对值b=,解得逸出功W0=eb,故C正确;b等于逸出功与电荷量的比值,而逸出功与材料有关,则b与材料有关,故D错误;更换材料再实验,由于逸出功变化,可知图线的斜率不改变,纵轴截距改变,故B正确。[融会贯通]利用光电效应分析问题,应把握的三个关系(1)爱因斯坦光电效应方程Ek=hν-W0,式中W0为逸出功,它与极限频率νc的关系是W0=hνc。(2)Ekν图像反映了光电子的最大初动能和入射光频率的关系。(3)光电子的最大初动能Ek可以利用光电管通过实验的方法测得,即Ek=eUc,其中Uc是遏止电压。点点通(三) 对波粒二象性的理解1.光的波粒二象性(1)光的干涉、衍射、偏振现象证明了光具有波动性。(2)光电效应说明光具有粒子性。(3)光既具有波动性,又具有粒子性,即光具有波粒二象性。2.对光的波粒二象性的理解从数量上看个别光子的作用效果往往表现为粒子性;大量光子的作用效果往往表现为波动性从频率上看频率越低波动性越显著,越容易看到光的干涉和衍射现象;频率越高粒子性越显著,越不容易看到光的干涉和衍射现象,贯穿本领越强从传播与作用上看光在传播过程中往往表现出波动性;在与物质发生作用时往往表现出粒子性波动性与粒子性的统一由光子的能量ε=hν、光子的动量表达式p=也可以看出,光的波动性和粒子性并不矛盾,表示粒子性的粒子能量和动量的计算式中都含有表示波的特征的物理量——频率ν和波长λ[小题练通]1.(粤教教材原题)下列说法中正确的是( )A.光的波粒二象性学说彻底推翻了麦克斯韦的光的电磁说B.在光的双缝干涉实验中,暗条纹的地方是光子永远不能到达的地方C.光的双缝干涉实验中,大量光子打在光屏上的落点是有规律的,暗纹处落下光子的n概率小D.单个光子具有粒子性,大量光子具有波动性E.光的波动性是因为光子之间的相互作用的结果解析:选C 光的波粒二象性和光的电磁说并不互相矛盾,A错误;暗条纹的地方是光子到达的概率小的地方,B错误,C正确;光子既具有粒子性也具有波动性,只是单个光子粒子性比较明显,大量光子波动性比较明显,D错误;光的波动性不是光子之间的相互作用的结果,E错误。2.(人教教材改编题)用很弱的光做双缝干涉实验,把入射光减弱到可以认为光源和感光胶片之间不可能同时有两个光子存在,如图所示是不同数量的光子照射到感光胶片上得到的照片。这些照片说明( )A.光只有粒子性没有波动性B.光只有波动性没有粒子性C.少量光子的运动显示波动性,大量光子的运动显示粒子性D.少量光子的运动显示粒子性,大量光子的运动显示波动性解析:选D 由题图可以看出,少量光子的运动显示粒子性,大量光子的运动显示波动性,故D正确。1.如图所示,当弧光灯射出的光经一狭缝后,在锌板上形成明暗相间的条纹,同时与锌板相连的验电器铝箔有张角,则该实验( )A.只能证明光具有波动性B.只能证明光具有粒子性C.只能证明光能够发生衍射D.证明光具有波粒二象性解析:选D 弧光灯射出的光经一狭缝后,在锌板上形成明暗相间的条纹,这是光的衍射,证明了光具有波动性;验电器铝箔有张角,说明锌板发生了光电效应,则证明了光具有粒子性,所以该实验证明了光具有波粒二象性,D正确。2.下表给出了一些金属材料的逸出功。现用波长为400nm的单色光照射这些材料,能产生光电效应的材料最多有几种(普朗克常量h=6.6×10-34J·s,光速c=3×n108m/s)( )材料铯钙镁铍钛逸出功(×10-19J)3.04.35.96.26.6A.2种 B.3种C.4种D.5种解析:选A 光电效应发生的条件是入射光的频率大于金属的极限频率,入射光的能量大于金属的逸出功,单色光的能量为ε=hν=h,解得ε=6.6×10-34×J=4.95×10-19J,由表中材料可知光子能量大于逸出功的金属有2种,所以A项正确,B、C、D项错误。3.两束能量相同的色光,都垂直地照射到物体表面,第一束光在某段时间内打到物体表面的光子数与第二束光在相同时间内打到物体表面的光子数之比为5∶4,则这两束光的光子能量和波长之比分别为( )A.4∶5 4∶5B.5∶4 4∶5C.5∶4 5∶4D.4∶5 5∶4解析:选D 两束能量相同的色光,都垂直地照射到物体表面,在相同时间内打到物体表面的光子数之比为5∶4,根据E=NE0可得光子能量之比为4∶5,再根据E0=hν=h,可知光子能量与波长成反比,故光子波长之比为5∶4。故D正确。4.(2017·北京高考)2017年年初,我国研制的“大连光源”——极紫外自由电子激光装置,发出了波长在100nm(1nm=10-9m)附近连续可调的世界上最强的极紫外激光脉冲。“大连光源”因其光子的能量大、密度高,可在能源利用、光刻技术、雾霾治理等领域的研究中发挥重要作用。一个处于极紫外波段的光子所具有的能量可以电离一个分子,但又不会把分子打碎。据此判断,能够电离一个分子的能量约为(取普朗克常量h=6.6×10-34J·s,真空光速c=3×108m/s)( )A.10-21JB.10-18JC.10-15JD.10-12J解析:选B 光子的能量E=hν,c=λν,联立解得E≈2×10-18J,B项正确。5.如图所示,两平行金属板A、B板间电压恒为U,一束波长为λ的入射光射到金属板B上,使B板发生了光电效应,已知该金属板的逸出功为W,电子的质量为m,电荷量为e,已知普朗克常量为h,真空中光速为c,下列说法中不正确的是( )A.该入射光的能量为hnB.到达A板的光电子的最大动能为h-W+eUC.若增大两板间电压,B板没有光电子逸出D.若减小入射光的波长,一定会有光电子逸出解析:选C 根据E=hν,而ν=,则该入射光的能量为h,故A正确;逸出光电子的最大动能Ekm=h-W,根据动能定理,eU=Ekm′-Ekm,则到达A板的光电子的最大动能为Ekm′=h-W+eU,故B正确;若增大两板间电压,不会影响光电效应现象,仍有光电子逸出,故C错误;若减小入射光的波长,那么入射光的频率增大,一定会有光电子逸出,故D正确。6.(多选)某同学在研究某金属的光电效应现象时,发现该金属逸出光电子的最大初动能Ek与入射光频率ν的关系如图所示。若图线在横、纵坐标轴上的截距分别为a和-b,已知电子所带电荷量为e,由图像可以得到( )A.该金属的逸出功为零B.普朗克常量为,单位为J·HzC.当入射光的频率为2a时,逸出光电子的最大初动能为bD.当入射光的频率为3a时,遏止电压为解析:选CD 根据爱因斯坦光电效应方程Ek=hν-W0,可知Ekν图线的斜率表示普朗克常量h,即h==,单位为J/Hz,图线与纵轴截距的绝对值表示金属的逸出功W0,由题图知W0=b,选项A、B错误;当入射光的频率ν=2a时,由Ek=hν-W0,可得光电子的最大初动能Ek=·2a-b=b,当入射光的频率为3a时,光电子的最大初动能为Ek=2b,由最大初动能Ek与遏止电压的关系式Ek=eUc可知,遏止电压为Uc=,选项C、D正确。7.(多选)在光电效应实验中,飞飞同学用同一光电管在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。则可判断出( )A.甲光的频率大于乙光的频率B.乙光的波长大于丙光的波长C.乙光的截止频率大于丙光的截止频率nD.甲光的光电子最大初动能小于丙光的光电子最大初动能解析:选BD 因光电管不变,所以逸出功不变。由图像知甲光、乙光对应的遏止电压相等,且小于丙光对应的遏止电压,所以甲光和乙光的光电子最大初动能相等且小于丙光的光电子最大初动能,故D正确;根据爱因斯坦光电效应方程Ek=hν-W0知甲光和乙光的频率相等,且小于丙光的频率,光的频率越大,波长越小,故A错误,B正确;截止频率是由金属决定的,与入射光无关,故C错误。8.(多选)美国物理学家密立根利用如图甲所示的电路研究金属的遏止电压Uc与入射光频率ν的关系,描绘出如图乙所示的图像,由此算出普朗克常量h,电子电荷量用e表示,下列说法正确的是( )A.入射光的频率增大,测遏止电压时,应使滑动变阻器的滑片P向M端移动B.增大入射光的强度,光电子的最大初动能也增大C.由Ucν图像可知,这种金属截止频率为νcD.由Ucν图像可求普朗克常量表达式为h=解析:选CD 入射光的频率增大,光电子的最大初动能增大,则遏止电压增大,测遏止电压时,应使滑动变阻器的滑片P向N端移动,故A错误;根据光电效应方程Ekm=hν-W0知,光电子的最大初动能与入射光的强度无关,故B错误;根据Ekm=hν-W0=eUc,解得Uc=-,图线的斜率k==,则h=,当遏止电压为零时,ν=νc,故C、D正确。9.(多选)分别用波长为λ和2λ的光照射同一种金属,产生的速度最快的光电子速度之比为2∶1,普朗克常量和真空中光速分别用h和c表示,下列说法正确的有( )A.该种金属的逸出功为B.该种金属的逸出功为C.波长超过2λ的光都不能使该金属发生光电效应D.波长超过4λ的光都不能使该金属发生光电效应解析:选AD 由hν=W0+Ek知h=W0+mv12,h=W0+mv22,又v1=2v2,解得W0n=,故选项A正确,B错误;光的波长小于或等于3λ时才能发生光电效应,故选项C错误,D正确。10.(多选)在光的双缝干涉实验中,光屏前放上照相底片并设法减弱光子流的强度,尽可能使光子一个一个地通过狭缝,对于曝光时间不长和曝光时间足够长的两种情况,以下说法正确的是( )A.若曝光时间不长,则底片上出现一些无规则的点B.若曝光时间足够长,则底片上出现干涉条纹C.这一实验结果证明了光具有波粒二象性D.这一实验结果否定了光具有粒子性解析:选ABC 若曝光时间不长,可知光子数不多,往往表现为粒子性,在底片上出现一些不规则的点,A正确;若曝光时间足够长,可知光子数较多,往往表现为波动性,在底片上出现干涉条纹,B正确;该实验表明光具有波粒二象性,C正确,D错误。第73课时 原子结构与原子核(双基落实课)点点通(一) 原子的核式结构1.电子的发现英国物理学家汤姆孙在研究阴极射线时发现了电子,提出了原子的“枣糕模型”。2.α粒子散射实验(1)α粒子散射实验装置(2)α粒子散射实验的结果:绝大多数α粒子穿过金箔后基本上仍沿原来的方向前进,但少数α粒子穿过金箔后发生了大角度偏转,极少数α粒子甚至被“撞了回来”。3.原子的核式结构模型(1)在原子的中心有一个很小的核,叫原子核,原子的所有正电荷和几乎所有质量都集中在原子核里,带负电的电子在核外绕核旋转。(2)核式结构模型的局限性:卢瑟福的原子核式结构模型能够很好地解释α粒子散射实验现象,但不能解释原子光谱是特征光谱和原子的稳定性。[小题练通]1.(粤教教材原题)如图的4个选项中,O点表示某原子核的位置,曲线ab和cd表示经过该原子核附近的α粒子的运动轨迹,正确的图是( )n解析:选D α粒子经过原子核时受原子核的库仑斥力,离原子核越近斥力作用越强,由此判断,D正确。2.如图所示是α粒子(氦原子核)被重金属原子核散射的运动轨迹,M、N、P、Q是轨迹上的四点,在散射过程中可以认为重金属原子核静止。图中所标出的α粒子在各点处的加速度方向正确的是( )A.M点B.N点C.P点D.Q点解析:选C α粒子(氦原子核)和重金属原子核都带正电,互相排斥,加速度方向与α粒子所受斥力方向相同。带电粒子加速度方向沿相应点与重金属原子核连线指向曲线的凹侧,故只有选项C正确。[融会贯通](1)根据α粒子散射的现象可以得出原子的核式结构模型。(2)少数α粒子发生大角度偏转是由于经过原子核附近时受到了较强的作用力。(3)原子核与α粒子之间的作用力为库仑斥力,距离越近,斥力越强。点点通(二) 能级跃迁1.氢原子光谱(1)光谱:用光栅或棱镜可以把各种颜色的光按波长展开,获得光的波长(频率)和强度分布的记录,即光谱。(2)光谱分类(3)氢原子光谱的实验规律:氢原子光谱是线状光谱,巴耳末系谱线的波长满足=R(n=3,4,5,…,R是里德伯常量,R=1.10×107m-1)。(4)光谱分析:利用每种原子都有自己的特征谱线可以用来鉴别物质和确定物质的组成成分,且灵敏度很高。在发现和鉴别化学元素上有着重大的意义。2.氢原子的能级结构、能级公式n(1)玻尔理论①定态:原子只能处于一系列不连续的能量状态中,在这些能量状态中原子是稳定的,电子虽然绕核运动,但并不向外辐射能量。②跃迁:电子从能量较高的定态轨道跃迁到能量较低的定态轨道时,会放出能量为hν的光子,这个光子的能量由前后两个能级的能量差决定,即hν=Em-En。(h是普朗克常量,h=6.63×10-34J·s)③轨道:原子的不同能量状态跟电子在不同的圆周轨道绕核运动相对应。原子的定态是不连续的,因此电子的可能轨道也是不连续的。(2)几个概念①能级:在玻尔理论中,原子的能量是量子化的,这些量子化的能量值,叫做能级。②基态:原子能量最低的状态。③激发态:在原子能量状态中除基态之外的其他的状态。④量子数:原子的状态是不连续的,用于表示原子状态的正整数。(3)氢原子的能级公式:En=E1(n=1,2,3,…),其中E1为基态能量,其数值为E1=-13.6eV。(4)氢原子的半径公式:rn=n2r1(n=1,2,3,…),其中r1为基态半径,又称玻尔半径,其数值为r1=0.53×10-10m。3.氢原子的能级图[小题练通]1.(多选)(教科教材原题)根据玻尔原子结构理论,原子中电子绕核运动的半径( )A.可以取任意值B.是一系列不连续的特定值C.可以在某一范围内任意取值D.不同的轨道半径与不同的能量状态相对应解析:选BD 根据玻尔原子结构理论,电子绕核运动的半径只能是一系列不连续的特定值,且不同的轨道半径与不同的能量状态相对应,故B、D正确。n2.如图是氢原子的能级示意图。当氢原子从n=4能级跃迁到n=3能级时,辐射出光子a;从n=3能级跃迁到n=2能级时,辐射出光子b。以下判断正确的是( )A.在真空中光子a的波长大于光子b的波长B.光子b可使氢原子从基态跃迁到激发态C.光子a可能使处于n=4能级的氢原子电离D.大量处于n=3能级的氢原子向低能级跃迁时最多辐射2种不同的谱线解析:选A 氢原子从n=4能级跃迁到n=3能级的能级差小于从n=3能级跃迁到n=2能级时的能级差,根据Em-En=hν知,光子a的能量小于光子b的能量,所以光子a的频率小于光子b的频率,在真空中光子a的波长大于光子b的波长,故A正确;光子b的能量小于基态与任一激发态的能级差,所以不能被基态的原子吸收,故B错误;根据Em-En=hν可知光子a的能量小于n=4能级氢原子的电离能,所以不能使处于n=4能级的氢原子电离,C错误;大量处于n=3能级的氢原子向低能级跃迁时最多辐射3种不同的谱线,故D错误。3.(2018·天津高考)氢原子光谱在可见光区域内有四条谱线Hα、Hβ、Hγ和Hδ,都是氢原子中电子从量子数n>2的能级跃迁到n=2的能级时发出的光,它们在真空中的波长由长到短,可以判定( )A.Hα对应的前后能级之差最小B.同一介质对Hα的折射率最大C.同一介质中Hδ的传播速度最大D.用Hγ照射某一金属能发生光电效应,则Hβ也一定能解析:选A 根据ν=,可得να<νβ<νγ<νδ,由Em-En=hν,知Hα对应的两能级之差最小,故A正确;光在同一介质中传播,频率越高,折射率越大,而传播速度v=,则Hα的折射率最小,Hδ的传播速度最小,故B、C错误;光的频率达到截止频率才能发生光电效应,所以用Hγ照射某一金属能发生光电效应,而Hβ则不一定能,故D错误。4.(沪科教材原题)处于基态的氢原子在某单色光照射下,只能发出频率分别为ν1、ν2、ν3的三种光,且ν1<ν2<ν3,则该照射光的光子能量为( )A.hν1 B.hν2C.hν3D.h(ν1+ν2+ν3)解析:选C 基态氢原子吸收光子后只能发出频率为ν1、ν2、ν3的三种光,说明氢原子从n=1能级可以跃迁到n=3能级,故该光子的能量为hν3,C正确。[融会贯通]解答氢原子能级图与原子跃迁问题的注意事项n(1)能级之间跃迁时放出的光子频率是不连续的。(2)能级之间发生跃迁时放出(吸收)光子的频率由hν=Em-En求得,若求波长可由公式c=λν求得。(3)一个氢原子跃迁发出可能的光谱线条数最多为n-1。(4)一群氢原子跃迁发出可能的光谱线条数的两种求解方法:①用数学中的组合知识求解:N=C=。②利用能级图求解:在氢原子能级图中将氢原子跃迁的各种可能情况一一画出,然后相加。点点通(三) 原子核的衰变规律1.原子核的组成原子核由质子和中子组成,质子和中子统称为核子。质子带正电,中子不带电。2.天然放射现象(1)天然放射现象:元素自发地放出射线的现象,首先由贝可勒尔发现。天然放射现象的发现,说明原子核具有复杂的结构。(2)三种射线构成符号电荷量质量电离能力穿透能力α射线氦核He+2e4u最强最弱β射线电子e-e较强较强γ射线光子γ00最弱最强 3.原子核的衰变(1)衰变:原子核放出α粒子或β粒子,变成另一种原子核的变化称为原子核的衰变。(2)分类α衰变:X→Y+Heβ衰变:X→Y+e。(3)半衰期:放射性元素的原子核有半数发生衰变所需的时间。半衰期由原子核内部自身的因素决定,跟原子所处的物理、化学状态无关。[小题练通]1.(2017·全国卷Ⅱ)一静止的铀核放出一个α粒子衰变成钍核,衰变方程为U→Th+He。下列说法正确的是( )A.衰变后钍核的动能等于α粒子的动能B.衰变后钍核的动量大小等于α粒子的动量大小C.铀核的半衰期等于其放出一个α粒子所经历的时间nD.衰变后α粒子与钍核的质量之和等于衰变前铀核的质量解析:选B 静止的铀核在衰变过程中遵循动量守恒定律,由于系统的总动量为零,因此衰变后产生的钍核和α粒子的动量等大反向,即pTh=pα,B项正确;因此有=,由于钍核和α粒子的质量不等,因此衰变后钍核和α粒子的动能不等,A项错误;根据半衰期的定义可知,C项错误;由于衰变过程释放能量,根据爱因斯坦质能方程可知,衰变过程有质量亏损,D项错误。2.(粤教教材原题)氡222放在天平的左盘时,需在天平的右盘加444g砝码,天平才能处于平衡状态,氡222发生α衰变,经过一个半衰期以后,欲使天平再次平衡,应从右盘中取出的砝码为( )A.220gB.8gC.2gD.4g解析:选D 经过一个半衰期,有一半的氡222发生α衰变,放出的α粒子的总质量为4g,故D正确。3.(2019·东北三校模拟)如图所示为查德威克发现中子的实验示意图,利用钋(Po)衰变放出的α粒子轰击铍(Be),产生的粒子P能将石蜡中的质子打出来,下列说法正确的是( )A.α粒子是氦原子B.粒子Q的穿透能力比粒子P的强C.钋的α衰变方程为Po→Pb+HeD.α粒子轰击铍的核反应方程为He+Be→126C+n解析:选D α粒子是氦原子核,选项A错误;粒子P是中子,粒子Q是质子,由于质子带正电,当质子射入物体时,受到库仑力的作用会阻碍质子的运动,而中子不带电,不受库仑力作用,粒子P的穿透能力比粒子Q的强,选项B错误;在钋衰变中,根据质量数守恒知产生的是Pb,选项C错误;He+Be→C+n是查德威克发现中子的核反应方程,选项D正确。4.(鲁科教材原题)完成下面的核反应方程式,并指出其衰变类型。Ra→Rn+________,这是________衰变。Pb→Bi+________,这是________衰变。解析:根据电荷数守恒和质量数守恒可得:Ra→Rn+He,为α衰变。nPb→Bi+e,为β衰变。答案:He α e β[融会贯通](1)原子核发生衰变时遵循电荷数守恒和质量数守恒。(2)每发生一次α衰变,原子核的质量数减小“4”,每发生一次β衰变,原子核的质子数增大“1”。(3)原子核的衰变发生的快慢由半衰期决定,半衰期取决于放射性元素的种类,与原子所处的外界条件无关。点点通(四) 核反应方程与核能计算1.核反应的四种类型类型可控性核反应方程典例衰变α衰变自发U→Th+Heβ衰变自发Th→Pa+e人工转变人工控制N+He→O+H(卢瑟福发现质子)He+Be→C+n(查德威克发现中子)Al+He→P+n(约里奥·居里夫妇发现人工放射性)P→Si+ e重核裂变比较容易进行人工控制U+n→Ba+Kr+3nU+n→Xe+Sr+10n轻核聚变很难控制H+H→He+n2.核反应方程式的书写(1)熟记常见基本粒子的符号,是正确书写核反应方程的基础。如质子(H)、中子(n)、α粒子(He)、β粒子(e)、正电子(e)、氘核(H)、氚核(H)等。(2)掌握核反应方程遵守的规律,是正确书写核反应方程或判断某个核反应方程是否正确的依据,由于核反应不可逆,所以书写核反应方程式时只能用“→”表示反应方向。(3)核反应过程中质量数守恒,电荷数守恒。3.对质能方程的理解(1)一定的能量和一定的质量相联系,物体的总能量和它的质量成正比,即E=mc2。方程的含义:物体具有的能量与它的质量之间存在简单的正比关系,物体的能量增大,质量也增大;物体的能量减少,质量也减少。n(2)核子在结合成原子核时出现质量亏损Δm,其能量也要相应减少,即ΔE=Δmc2。(3)原子核分解成核子时要吸收一定的能量,相应的质量增加Δm,吸收的能量为ΔE=Δmc2。4.核能的计算方法(1)应用质能方程解题的流程图:→→(2)核反应遵守动量守恒定律和能量守恒定律,因此我们可以结合动量守恒定律和能量守恒定律来计算核能。在动量守恒方程中,各质量都可用质量数表示。(3)根据核子比结合能来计算结合能:原子核的结合能=核子比结合能×核子数。[小题练通]1.(2018·全国卷Ⅲ)1934年,约里奥—居里夫妇用α粒子轰击铝核Al,产生了第一个人工放射性核素X:α+Al→n+X。X的原子序数和质量数分别为( )A.15和28 B.15和30C.16和30D.17和31解析:选B 将核反应方程式改写成He+Al→n+X,由电荷数守恒和质量数守恒知,X应为X,B正确。2.(沪科教材原题)完成下列核反应方程,并指出核反应的类型:He+________→He+H,是________变。Na→Mg+________,是________变。Na+________→Na+H,是________变。92U+n→56Ba+________+3n,是________变。解析:He+H→He+H,是轻核聚变。Na→Mg+ e,是β衰变。Na+ 0+1e→Na+H,是人工转变。U+n→Ba+Kr+3n,是重核裂变。答案:H 轻核聚 e β衰 e 人工转 Kr 重核裂3.(教科教材原题)两个氘核聚变时产生一个中子和一个氦核(氦的同位素),已知氘核的质量mH=2.0141u,氦核的质量为mHe=3.0160u,中子的质量为mn=1.0087u。(以上质量均指静质量)(1)写出核反应方程;(2)计算反应释放出的核能;(3)如果反应前两个氘核的动能均为0.35nMeV,它们正面对碰发生聚变,且反应释放的核能全部转化为动能,计算反应生成的氦核和中子的动能。解析:(1)H+H→He+n。(2)Δm=2.0141×2u-3.0160u-1.0087u=0.0035uΔE=0.0035×931.5MeV≈3.26MeV。(3)核反应过程中动量守恒,设氦核质量为m1,速度大小为v1,中子质量为m2,速度大小为v2m1v1=m2v2=p根据Ek=,==可得Ek1=E总=×(0.35×2+3.26)MeV=0.99MeVEk2=E总=×(0.35×2+3.26)MeV=2.97MeV。答案:(1)H+H→He+n (2)3.26MeV (3)0.99MeV 2.97MeV[融会贯通](1)根据ΔE=Δmc2计算时,Δm的单位是“kg”,c的单位是“m/s”,ΔE的单位是“J”。(2)根据ΔE=Δm×931.5MeV计算时,Δm的单位是“u”,ΔE的单位是“MeV”。1.对卢瑟福的α粒子散射实验的结果,下列说法中正确的是( )A.原子内存在电子B.原子的大小为10-10mC.原子的正电荷均匀分布在它的全部体积上D.原子的全部正电荷和几乎全部质量都集中在原子核内解析:选D 根据α粒子散射实验现象,绝大多数α粒子穿过金箔后沿原来方向前进,少数发生较大角度的偏转,极少数偏转角超过90°,可知C错,D对;α粒子散射实验的结果不能说明原子内存在电子也不能判定原子的大小为10-10m,A、B错。2.(2019·沈阳联考)如图所示,根据氢原子的能级图,现让一束单色光照射到一群处于基态(量子数n=1)的氢原子上,受激的氢原子能自发地发出6种不同频率的光,则照射氢原子的单色光的光子能量为( )A.13.6eV B.3.4eVC.12.75eVD.12.09eV解析:选C 根据受激的氢原子能自发地发出6种不同频率的光,有6=n,解得n=4,即能自发地发出6种不同频率的光的受激氢原子一定是在n=4能级,则照射处于基态的氢原子的单色光的光子能量为-0.85eV-(-13.6eV)=12.75eV,C正确。3.“慧眼”观测的范围是美丽的银河系,γ射线暴是主要研究的对象之一。γ射线暴是来自天空中某一方向的γ射线强度在短时间内突然增强,随后又迅速减弱的现象,它是仅次于宇宙大爆炸的爆发现象。下列关于γ射线的论述中正确的是( )A.γ射线同α、β射线一样,都是高速带电粒子流B.γ射线的穿透能力比α射线强,但比β射线弱C.γ射线是原子核能级跃迁时产生的D.利用γ射线可以使空气电离,消除静电解析:选C γ射线是电磁波,不是高速带电粒子流,A错误;α、β、γ三种射线中,γ射线能量最高,穿透能力最强,B错误;利用α射线的电离作用可以使空气电离,将静电泄出,从而消除有害静电,D错误;γ射线是原子核能级跃迁时产生的,C正确。4.(2018·江苏高考)已知A和B两种放射性元素的半衰期分别为T和2T,则相同质量的A和B经过2T后,剩有的A和B质量之比为( )A.1∶4B.1∶2C.2∶1D.4∶1解析:选B 根据衰变规律,经过2T后A剩有的质量mA=m0=m0,B剩有的质量mB=m0=m0,所以=,故选项B正确。5.(2018·天津高考)国家大科学工程——中国散裂中子源(CSNS)于2017年8月28日首次打靶成功,获得中子束流,可以为诸多领域的研究和工业应用提供先进的研究平台。下列核反应中放出的粒子为中子的是( )A.N俘获一个α粒子,产生O并放出一个粒子B.Al俘获一个α粒子,产生P并放出一个粒子C.B俘获一个质子,产生Be并放出一个粒子D.Li俘获一个质子,产生He并放出一个粒子解析:选B 根据质量数守恒、电荷数守恒,各选项核反应方程如下:N+HeO+H,故A错误;Al+HeP+n,故B正确;B+HBe+He,故C错误;Li+HHe+He,故D错误。6.中子n、质子p、氘核D的质量分别为mn、mp、mD。现用光子能量为E的γ射线照射静止氘核使之分解,反应方程为γ+D→p+n。若分解后的中子、质子的动能可视为相等,则中子的动能是( )nA.[(mD-mp-mn)c2-E]B.[(mp+mn-mD)c2+E]C.[(mD-mp-mn)c2+E]D.[(mp+mn-mD)c2-E]解析:选C 氘核分解成中子、质子时,质量增加Δm=mp+mn-mD,所以2Ek=E-(mp+mn-mD)c2,中子动能为Ek=[(mD-mp-mn)c2+E]。故C正确。7.如图所示是氢原子从n=3、4、5、6能级跃迁到n=2能级时辐射的四条光谱线,其中频率最大的是( )A.HαB.HβC.HγD.Hδ解析:选D 根据能级跃迁公式可知,当氢原子由第6能级跃迁到第2能级时,发出光子的能量最高,为hν=E6-E2,辐射的光子Hδ频率最大,故D选项正确。8.(2017·天津高考)我国自主研发制造的国际热核聚变核心部件在国际上率先通过权威机构认证,这是我国对国际热核聚变项目的重大贡献。下列核反应方程中属于聚变反应的是( )A.H+H→He+nB.N+He→O+HC.He+Al→P+nD.U+n→Ba+Kr+3n解析:选A A项是氢元素的两种同位素氘和氚聚变成氦元素的核反应方程,B、C项属于原子核的人工转变,D项属于重核的裂变,因此只有A项正确。9.(多选)(2019·周口模拟)卢瑟福通过用α粒子(He)轰击氮核(N)的实验,首次实现了原子核的人工转变,则下列说法中正确的是( )A.该核反应的方程为He+N→O+HB.通过此实验发现了质子C.原子核在人工转变的过程中,电荷数可以不守恒nD.在此实验中,核子反应前的总质量一定等于反应后的总质量解析:选AB 由质量数守恒和电荷数守恒,可知核反应方程为:He+N→O+H,选项A正确;卢瑟福通过此实验发现了质子,选项B正确;在原子核的人工转变过程中,其电荷数守恒,选项C错误;由于在核反应中有能量转化,所以质量数守恒,质量不守恒,选项D错误。10.(多选)在某些恒星内,3个α粒子结合成1个C原子核,C原子核的质量是12.0000u,He原子核的质量是4.0026u。已知1u=1.66×10-27kg,1eV=1.6×10-19J。则( )A.反应过程中的质量亏损是0.0078uB.反应过程中的质量亏损是1.29×10-29kgC.反应过程中释放的能量是7.26MeVD.反应过程中释放的能量是1.16×10-19J解析:选ABC 由题意可得核反应方程为3He→6C+ΔE。则核反应中的质量亏损为Δm=(3×4.0026-12.0000)u=0.0078u=0.0078×1.66×10-27kg≈1.29×10-29kg,由质能方程得ΔE=Δmc2=1.29×10-29×(3×108)2J=1.161×10-12J≈7.26MeV。故A、B、C正确。11.(多选)静止在匀强磁场中的U核发生α衰变,产生一个α粒子和一个未知的粒子X,它们在磁场中的运动轨迹如图所示,下列说法正确的是( )A.该核反应方程为U→X+HeB.α粒子和X粒子在磁场中做圆周运动时转动方向相同C.轨迹1、2分别是α粒子、X粒子的运动轨迹D.α粒子、X粒子运动轨迹半径之比为45∶1解析:选ABD 由题意可知该核反应方程为U→X+He,选项A正确;核反应前U核静止,动量为零,根据动量守恒可知反应后系统总动量为零,所以α粒子和X粒子的动量大小相等,方向相反,即速度方向相反,又都带正电,故转动方向相同,选项B正确;根据动量守恒可知α粒子和X粒子的动量大小p相等,由带电粒子在磁场中运动半径公式R=可知轨道半径R与其所带电荷量成反比,故α粒子、X粒子运动轨迹半径之比为45∶1,选项C错误,D正确。12.裂变反应是目前核能利用中常用的反应,以原子核U为燃料的反应堆中,当U俘获一个慢中子后发生的裂变反应可以有多种方式,其中一种可表示为 U + n → Xe + Sr + 3n235.0439 1.0087 138.9178 93.9154n反应方程下方的数字是中子及有关原子的静止质量(原子的质量单位为u),已知1u的质量对应的能量为9.3×102MeV,此裂变反应释放出的能量是________MeV。解析:此裂变反应的质量亏损为:(235.0439+1.0087)u-(138.9178+93.9154+3×1.0087)u=0.1933u由1u的质量对应的能量为9.3×102MeVΔE=9.3×102×0.1933MeV≈1.80×102MeV。答案:1.80×102