- 170.20 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
章末检测试卷(三)(B)一、选择题(本大题共12小题,每小题5分,共60分)1.以下事件是随机事件的是( )A.下雨屋顶湿B.秋后柳叶黄C.有水就有鱼D.水结冰体积变大答案 C解析 A,B,D是必然事件.2.盘子里有肉馅、素馅和豆沙馅的包子共10个,从中随机取出1个,若它是肉馅包子的概率为,它不是豆沙馅包子的概率为,则素馅包子的个数为( )A.1B.2C.3D.4答案 C解析 由题意,可知这个包子是肉馅或素馅的概率为,所以它是素馅包子的概率为-=,故素馅包子的个数为10×=3.3.有一个游戏,其规则是甲、乙、丙、丁四个人从同一地点随机地向东、南、西、北四个方向前进,每人一个方向.事件“甲向南”与事件“乙向南”的关系为( )A.两事件是互斥但非对立事件B.两事件是对立事件C.两事件的和事件是不可能事件D.两事件的积事件是必然事件答案 A解析 由于每人一个方向,故“甲向南”意味着“乙向南”是不可能的,故是互斥事件,但不是对立事件.4.(2018·钦州期中)根据某医疗研究所的调查,某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%.现有一血液为A型病人需要输血,若在该地区任选一人,那么能为病人输血的概率为( )A.15%B.20%C.45%D.65%答案 Dn解析 因为某地区居民血型的分布为:O型50%,A型15%,B型30%,AB型5%,现在能为A型病人输血的有O型和A型,故为病人输血的概率为50%+15%=65%,故选D.5.根据某市疾控中心的健康监测,该市在校中学生的近视率约为78.7%.某眼镜厂商要到一中学给近视学生配送滴眼液,每人一瓶,已知该校学生总数为600人,则眼镜商应带滴眼液的数目为( )A.600B.787C.不少于473D.不多于473答案 C解析 由概率的意义,该校近视生人数约为78.7%×600=472.2,结合实际情况,应带滴眼液不少于473瓶.6.如图所示,将一个长与宽不等的长方形沿对角线分成四个区域,并涂上四种颜色,中间装个指针,使其可以自由转动,则下列对指针停留在各区域的可能性的说法正确的是( )A.一样大B.蓝白区域大C.红黄区域大D.由指针转动的圈数决定答案 B解析 哪个区域的张角大,则指针停留在哪个区域的可能性大,显然蓝、白区域的角度大,故选B.7.小丽和小明一起用A,B两枚均匀的小正方体(小正方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小丽掷出的A小正方体朝上的数字为x,小明掷出的B小正方体朝上的数字为y,来确定点P(x,y),那么他们各掷一次所确定的点P(x,y)落在抛物线y=-x2+4x上的概率为( )A.B.C.D.答案 C解析 根据题意,两人各掷小正方体一次,每人都有6种可能性,则点P(x,y)的情况有6×6=36种可能,而y=-x2+4x=-(x-2)2+4,即(x-2)2+y=4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3种.因此满足条件的概率为=.n8.设不等式组表示的平面区域为D,在区域D内随机取一个点,则此点到坐标原点的距离大于2的概率是( )A.B.C.D.答案 D解析 根据题意作出满足条件的几何图形求解.如图所示,正方形OABC及其内部为不等式组表示的区域D,且区域D的面积为4,而阴影部分表示的是区域D内到坐标原点的距离大于2的区域.易知该阴影部分的面积为4-π.因此满足条件的概率是.9.某年级有12个班,现要从2班到12班中选1个班的学生参加一项活动,有人提议:掷两个骰子,得到的点数之和是几就选几班,这种选法( )A.公平,每个班被选到的概率都为B.公平,每个班被选到的概率都为C.不公平,6班被选到的概率最大D.不公平,7班被选到的概率最大答案 D解析 P(1)=0,P(2)=P(12)=,P(3)=P(11)=,P(4)=P(10)=,P(5)=P(9)=,P(6)=P(8)=,P(7)=,故选D.10.下列概率模型中,几何概型的个数为( )①从区间[-10,10]内任取出一个数,求取到绝对值不大于1的数的概率;②从区间[-10,10]内任取出一个整数,求取到大于1而小于2的数的概率;③向一个边长为4cm的正方形ABCD内投一点P,求点P离中心不超过1cm的概率.A.1B.2C.3D.0答案 Bn解析 ①是几何概型,因为区间[-10,10]和[-1,1]上有无限多个数可取(满足无限性),且在这两个区间内每个数被取到的机会是相等的(满足等可能性);②不是几何概型,因为区间[-10,10]上的整数只有21个(是有限的),不满足无限性特征;③是几何概型,因为在边长为4cm的正方形和半径为1cm的圆内均有无数多个点,且这两个区域内的任何一个点都有可能被投到,故满足无限性和等可能性.11.如图所示,在正方形围栏内均匀地撒入米粒,一只小鸡在其中随意啄食,则小鸡在正方形的内切圆中的概率是( )A.B.C.D.答案 B解析 设正方形的边长为2R.由几何概型的概率公式可得P==,即小鸡在正方形的内切圆中的概率为.12.(2018·湖北省部分重点中学考试)某商场对某一商品搞活动,已知该商品每一个的进价为3元,售价为8元,每天销售的第20个及之后的商品按半价出售,该商场统计了近10天这种商品的销售量,如图所示.设x为这种商品每天的销售量,y为该商场每天销售这种商品的利润,从日利润不少于96元的几天里任选2天,则选出的这2天日利润都是97元的概率为( )A.B.C.D.答案 Bn解析 日销售量不少于20个时,日利润不少于96元,其中日销售量为20个时,日利润为96元;日销售量为21个时,日利润为97元.从条形统计图可以看出,日销售量为20个的有3天,日销售量为21个的有2天,日销售量为20个的3天记为a,b,c,日销售量为21个的2天记为A,B,从这5天中任选2天,可能的情况有10种:(a,b),(a,c),(a,A),(a,B),(b,c),(b,A),(b,B),(c,A),(c,B),(A,B),其中选出的2天日销售量都为21个的情况只有1种,故所求概率P=,故选B.二、填空题(本大题共4小题,每小题5分,共20分)13.为了调查某野生动物保护区内某种野生动物的数量,调查人员逮到这种动物1200只作过标记后放回,一星期后,调查人员再次逮到该种动物1000只,其中作过标记的有100只,估算保护区有这种动物________只.答案 12000解析 设保护区内有这种动物x只,因为每只动物被逮到的概率是相同的,所以=,解得x=12000.14.玲玲和倩倩是一对好朋友,她俩都想去观看周杰伦的演唱会,可手里只有一张票,怎么办呢?玲玲对倩倩说:“我向空中抛两枚同样的一元硬币,如果落地后一正一反,我就去;如果落地后两面一样,你就去!”你认为这个游戏________(“公平”或“不公平”).答案 公平解析 向空中同时抛两枚同样的一元硬币,落地后的结果有“正正”“反正”“正反”“反反”四种情况,其中“一正一反”和“两面一样”的概率都是,因此游戏是公平的.15.若随机事件A,B互斥,A,B发生的概率均不等于0,且P(A)=2-a,P(B)=4a-5,则实数a的取值范围是________________.答案 解析 由题意可知即解得所以