- 158.92 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2.1.1 简单随机抽样学习目标 1.了解随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.3.掌握简单随机抽样中的抽签法、随机数表法的一般步骤.知识点一 统计的基本概念思考 样本与样本容量有什么区别?答案 样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.梳理 (1)总体:一般把所考察对象的某一数值指标的全体构成的集合看作总体.(2)个体:构成总体的每一个元素作为个体.(3)样本:从总体中抽出若干个个体所组成的集合叫样本.(4)样本容量:样本中个体的数目叫样本容量.知识点二 简单随机抽样思考 从含有甲、乙的9件产品中随机抽取一件,总体内的各个个体被抽到的机会相同吗?为什么?甲被抽到的机会是多少?答案 总体内的各个个体被抽到的机会是相同的.因为是从9件产品中随机抽取一件,这9件产品每件产品被抽到的机会都是,甲也是.梳理 1.一般地,从元素个数为N的总体中不放回地抽取容量为n的样本,如果每一次抽取时总体中的各个个体有相同的可能性被抽到,这种抽样方法叫做简单随机抽样.这样抽取的样本,叫做简单随机样本.2.简单随机抽样的四个特点(1)它要求被抽取样本的总体的个数有限,这样便于通过随机抽取的样本对总体进行分析.(2)它是从总体中逐个抽取,这样便于在抽样实践中进行操作.(3)它是一种不放回抽样,由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.(4)它是一种等机会抽样,不仅每次从总体中抽取一个个体时,各个个体被抽到的机会相等,而且在整个抽样的过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.知识点三 抽签法和随机数表法n思考 采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?答案 为了使每个号签被抽取的可能性相等,保证抽样的公平性.梳理 1.抽签法:把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2.随机数表法:随机抽样中,另一个经常被采用的方法是随机数表法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.利用随机数表法抽取个体时的注意事项(1)定起点:事先应确定以表中的哪个数(哪行哪列)作为起点.(2)定方向:读数的方向(向左、向右、向上或向下都可以).(3)读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,如果出现重复则跳过,直到取满所需的样本个体数.1.简单随机抽样也可以是有放回的抽样.( × )2.简单随机抽样中每个个体被抽到的机会相等.( √ )3.采用随机数表法抽取样本时,个体编号的位数必须相同.( √ )题型一 简单随机抽样的判断例1 下面的抽样是简单随机抽样吗?为什么?(1)小乐从玩具箱中的10件玩具中随意拿出一件玩,玩后放回,再拿出一件,连续拿出四件;(2)某学校从300名学生中一次性抽取20名学生调查睡眠情况.解 (1)不是简单随机抽样,因为玩具被放回了,不符合“不放回抽样”这一特点.(2)不是简单随机抽样,因为一次性抽取不符合“逐个抽取”这一特点.反思与感悟 当抽样具有:(1)总体中个体数是有限的,(2)逐个抽取,(3)不放回抽取,(4)每个个体被抽到的机会等可能时,为简单随机抽样,否则不是简单随机抽样.n跟踪训练1 下面的抽样方法是简单随机抽样的是( )A.盒子中有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里B.某车间包装一种产品,在自动包装传送带上,每隔5分钟抽一包产品,称其重量是否合格C.某校分别从行政人员、教师、后勤人员中抽取2人,14人,4人了解他们对学校机构改革的意见D.从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已编好号,对编号随机抽取)答案 D解析 依据简单随机抽样的特点知,只有D符合.题型二 简单随机抽样等可能性应用例2 一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.答案 解析 因为简单随机抽样过程中每个个体被抽到的可能性均为,所以第一个空填.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为.反思与感悟 简单随机抽样,每次抽取时,总体中各个个体被抽到的可能性相同,在整个抽样过程中各个个体被抽到的机会也都相等.跟踪训练2 从总体容量为N的一批零件中,抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N的值为( )A.120B.200C.150D.100答案 A解析 因为从含有N个个体的总体中抽取一个容量为30的样本时,在每次抽取一个个体的过程中任意一个个体被抽到的可能性均为,在整个抽样过程中每个个体被抽到的可能性为,所以=0.25,从而有N=120.故选A.n题型三 抽签法与随机数表法及应用例3 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解 方案如下:第一步,将18名志愿者编号,号码为01,02,03,…,18.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.反思与感悟 一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练3 从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解 第一步,将20架钢琴编号,号码是01,02,…,20.第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,与所得号码对应的5架钢琴就是要进行质量检查的对象.例4 假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,应如何操作?解 第一步,将800袋牛奶编号为000,001,…,799.第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7).第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.反思与感悟 抽签法和随机数表法对个体的编号是不同的,抽签法可以利用个体已有的编号,如学生的学籍号、产品的记数编号等,也可以重新编号,例如总体个数为100,编号可以为1,2,3,…,100.随机数表法对个体的编号要看总体的个数,总体数为100,通常为00,01,…,99.总体数大于100小于1000,从000开始编起,然后是001,002,….跟踪训练4 总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字,则选出来的第5个个体的编号为( )78166572080263140702436997280198n32049234493582003623486969387481A.08B.07C.02D.01答案 D解析 从随机数表第1行的第5列和第6列数字开始由左到右依次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为02,14,07,01,故第5个数为01.故选D.1.对于简单随机抽样,每个个体被抽到的机会( )A.不相等B.相等C.不确定D.与抽样次序有关答案 B解析 简单随机抽样中每一个个体被抽到的机会相等.2.下面抽样方法是简单随机抽样的是( )A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)答案 D解析 选项A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.3.一个总体中含有100个个体,以简单随机抽样方式从该总体中抽取一个容量为5的样本,则指定的某个个体被抽到的可能性为________.答案 解析 因为是简单随机抽样,故每个个体被抽到的机会相等,所以指定的某个个体被抽到的可能性为.4.某地有2000人参加自学考试,为了了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是________.答案 80n解析 设样本容量为n,根据简单随机抽样,得=0.04,解得n=80.5.学校举办元旦晚会,需要从每班选10名男生,8名女生参加合唱节目,某班有男生32名,女生28名,试用抽签法确定该班参加合唱的同学.解 第一步,将32名男生从0到31进行编号.第二步,用相同的纸条制成32个号签,在每个号签上写上这些编号.第三步,将写好的号签放在一个不透明的容器内摇匀,不放回地从中逐个抽出10个号签.第四步,相应编号的男生参加合唱.第五步,用相同的办法从28名女生中选出8名,则此8名女生参加合唱.1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数表法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时、费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数表法的优点也是简单易行,缺点是当总体容量大时,编号不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.一、选择题1.在简单随机抽样中,某一个个体被抽中的可能性( )A.与第几次抽样有关,第1次的可能性要大些B.与第几次抽样无关,每次的可能性都相等C.与第几次抽样有关,最后1次的可能性要大些D.以上都不正确答案 B解析 在简单随机抽样中,每个个体被抽到的可能性都相等,与第几次抽样无关,故选B.2.从某年级的500名学生中抽取60名学生进行体重的统计分析,下列说法正确的是( )A.500名学生是总体B.每个被抽查学生是个体C.抽取的60名学生的体重是一个样本D.抽取的60名学生的体重是样本容量n答案 C解析 由题意可知在此简单随机抽样中,总体是500名学生的体重,A错;个体是每个学生的体重,B错;样本容量为60,D错.3.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为( )A.B.k+m-nC.D.不能估计答案 C解析 设参加游戏的小孩有x人,则=,x=.4.下列抽样实验中,适合用抽签法的有( )A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验答案 B解析 个体数和样本容量较小时适合用抽签法,排除A,D;C中甲、乙两厂生产的两箱产品质量可能差别较大,也不适用,故选B.5.从10个篮球中任取一个,检查其质量,用随机数表法抽取样本,则应编号为( )A.1,2,3,4,5,6,7,8,9,10B.-5,-4,-3,-2,-1,0,1,2,3,4C.10,20,30,40,50,60,70,80,90,100D.0,1,2,3,4,5,6,7,8,9答案 D6.用简单随机抽样方法从含有10个个体的总体中,抽取一个容量为3的样本,其中某一个体a“第一次被抽到”的可能性,“第二次被抽到”的可能性分别是( )A.,B.,C.,D.,答案 A解析 简单随机抽样中每个个体被抽取的机会均等,都为.7.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该批产品的合格率为( )A.36%B.72%C.90%D.25%答案 Cn解析 ×100%=90%.8.已知总体容量为108,若用随机数法抽取一个容量为10的样本,下列对总体的编号正确的是( )A.1,2,…,108B.01,02,…,108C.00,01,…,107D.001,002,…,108答案 D解析 用随机数表法选取样本时,样本的编号位数要一致.故选D.二、填空题9.用随机数表法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是________.答案 0.2解析 因为样本容量为20,总体容量为100,所以总体中每个个体被抽到的可能性都为=0.2.10.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③这是一种不放回抽样;④它是一种等可能抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性.其中正确的有________.(请把你认为正确的所有序号都写上)答案 ①②③④11.假设要考察某公司生产的500克袋装牛奶的三聚氰胺是否超标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第7行第8列的数开始向右读,则得到的第4个样本个体的编号是________.(下面摘取了随机数表第7行至第9行)8442175331 5724550688 7704744767 2176335025 83921206766301637859 1695556719 9810507175 1286735807 44395238793321123429 7864560782 5242074438 1551001342 9966027954答案 068解析 由随机数表可以看出前4个样本的个体的编号是331,572,455,068.于是第4个样本个体的编号是068.n12.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.(填写序号)①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤每个运动员被抽到的机会相等.答案 ④⑤解析 ①2000名运动员不是总体,2000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.故①②③均错误,正确说法是④⑤.三、解答题13.为了检验某种药品的副作用,从编号为1,2,3,…,300的服药者中用随机数表法抽取10人作为样本,写出抽样过程.解 第一步,将300名服药者重新进行编号,分别为000,001,002,003,…,299.第二步,在随机数表(教材P87)中任选一数作为初始数,如选第1行第3列的数2.第三步,从选定的数2开始向右读,每次读取三位,凡不在000~299中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到226,052,021,192,277,242,203,104,088,007.第四步,以上这10个号码所对应的服药者即是要抽取的对象.四、探究与拓展14.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机挑选10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试分别用抽签法和随机数表法确定选中的艺人.解 抽签法:(1)将30名内地艺人从00到29编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,揉成团,然后放入一个不透明小筒中摇匀,从中逐个不放回地抽出10个号签,则相应编号的艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.随机数表法:(1)将18名香港艺人编号为00,02,…,17;(2)在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第1行第12列数“0”,向右读;(3)每次读取两位,凡不在00~17中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到05,06,02,16,08,14;(4)以上号码对应的6名香港艺人就是参加演出的人选.n利用类似的方法确定内地、台湾艺人人选.