- 694.61 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第3讲 机械能守恒定律及应用一、重力做功与重力势能的关系1.重力做功的特点(1)重力做功与路径无关,只与始末位置的高度差有关.(2)重力做功不引起物体机械能的变化.2.重力势能(1)表达式:Ep=mgh.(2)重力势能的特点重力势能是物体和地球所共有的,重力势能的大小与参考平面的选取有关,但重力势能的变化与参考平面的选取无关.3.重力做功与重力势能变化的关系(1)定性关系:重力对物体做正功,重力势能减小;重力对物体做负功,重力势能增大;(2)定量关系:重力对物体做的功等于物体重力势能的减小量.即WG=-(Ep2-Ep1)=-ΔEp.自测1 关于重力势能,下列说法中正确的是( )A.物体的位置一旦确定,它的重力势能的大小也随之确定B.物体与零势能面的距离越大,它的重力势能也越大C.一个物体的重力势能从-5J变化到-3J,重力势能减少了D.重力势能的减少量等于重力对物体做的功答案 D二、弹性势能1.定义:发生弹性形变的物体之间,由于有弹力的相互作用而具有的势能.2.弹力做功与弹性势能变化的关系:弹力做正功,弹性势能减小;弹力做负功,弹性势能增加.即W=-ΔEp.自测2 (多选)关于弹性势能,下列说法中正确的是( )A.任何发生弹性形变的物体,都具有弹性势能B.任何具有弹性势能的物体,一定发生了弹性形变C.物体只要发生形变,就一定具有弹性势能D.弹簧的弹性势能只跟弹簧被拉伸或压缩的长度有关答案 ABn三、机械能守恒定律1.内容:在只有重力或弹力做功的物体系统内,动能与势能可以互相转化,而总的机械能保持不变.2.表达式:mgh1+mv12=mgh2+mv22.3.机械能守恒的条件(1)系统只受重力或弹簧弹力的作用,不受其他外力.(2)系统除受重力或弹簧弹力作用外,还受其他内力和外力,但这些力对系统不做功.(3)系统内除重力或弹簧弹力做功外,还有其他内力和外力做功,但这些力做功的代数和为零.(4)系统跟外界没有发生机械能的传递,系统内、外也没有机械能与其他形式的能发生转化.自测3 (2018·山东省泰安市上学期期中)下列几种运动中,机械能一定守恒的是( )A.做匀速直线运动的物体B.做匀变速直线运动的物体C.做平抛运动的物体D.做匀速圆周运动的物体答案 C解析 做匀速直线运动的物体,动能不变,重力势能可能变化,机械能不一定守恒,故A错误;若是在水平面上的匀加速直线运动,动能增大,重力势能不变,则机械能不守恒,故B错误;做平抛运动的物体,只有重力做功,机械能必定守恒,故C正确;若物体在竖直平面内做匀速圆周运动,动能不变,重力势能在变化,机械能不守恒,故D错误.自测4 (多选)如图1所示,在地面上以速度v0抛出质量为m的物体,抛出后物体落到比地面低h的海平面上.若以地面为零势能面,而且不计空气阻力,则下列说法中正确的是( )图1A.重力对物体做的功为mghB.物体在海平面上的重力势能为mghC.物体在海平面上的动能为mv02-mghD.物体在海平面上的机械能为mv02n答案 AD命题点一 机械能守恒的判断1.只有重力做功时,只发生动能和重力势能的相互转化.如自由落体运动、抛体运动等.2.只有系统内弹力做功,只发生动能和弹性势能的相互转化.如在光滑水平面上运动的物体碰到一个弹簧,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.3.只有重力和系统内弹力做功,只发生动能、弹性势能、重力势能的相互转化.如自由下落的物体落到竖直的弹簧上,和弹簧相互作用的过程中,对物体和弹簧组成的系统来说,机械能守恒.4.除受重力(或系统内弹力)外,还受其他力,但其他力不做功,或其他力做功的代数和为零.如物体在沿斜面向下的拉力F的作用下沿斜面向下运动,其拉力的大小与摩擦力的大小相等,在此运动过程中,其机械能守恒.例1 如图2所示,将一个内外侧均光滑的半圆形槽置于光滑的水平面上,槽的左侧有一竖直墙壁.现让一小球自左端槽口A点的正上方由静止开始下落,小球从A点与半圆形槽相切进入槽内,则下列说法正确的是( )图2A.小球在半圆形槽内运动的全过程中,只有重力对它做功B.小球从A点向半圆形槽的最低点运动的过程中,小球处于失重状态C.小球从A点经最低点向右侧最高点运动的过程中,小球与槽组成的系统机械能守恒D.小球从下落到从右侧离开槽的过程中机械能守恒答案 C解析 小球从A点向半圆形槽的最低点运动的过程中,半圆形槽有向左运动的趋势,但实际上没有动,整个系统中只有重力做功,所以小球与槽组成的系统机械能守恒;小球过了半圆形槽的最低点以后,半圆形槽向右运动,系统没有其他形式的能量产生,满足机械能守恒的条件,所以系统的机械能守恒;小球从A点至到达槽最低点过程中,小球先失重,后超重;小球由最低点向右侧最高点运动的过程中,半圆形槽也向右移动,半圆形槽对小球做负功,小球的机械能不守恒,故选项C正确.n变式1 如图3所示,用一轻绳系一小球悬于O点.现将小球拉至水平位置,然后释放,不计阻力,小球下落到最低点的过程中,下列表述正确的是( )图3A.小球的机械能守恒B.小球所受的合力不变C.小球的动能不断减小D.小球的重力势能增加答案 A解析 小球在下落的过程中,受到重力和绳的拉力的作用,绳的拉力与小球的运动方向垂直,对小球不做功,只有重力做功,故在整个过程中小球的机械能守恒,选项A正确;由于小球的速度变大,动能增加,所需的向心力变大,故小球所受的合力变大,选项B、C错误;小球的高度下降,重力势能减小,选项D错误.命题点二 单物体的机械能守恒问题1.表达式2.一般步骤n3.选用技巧在处理单个物体机械能守恒问题时通常应用守恒观点和转化观点,转化观点不用选取零势能面.例2 (2016·全国卷Ⅲ·24)如图4所示,在竖直平面内有由圆弧AB和圆弧BC组成的光滑固定轨道,两者在最低点B平滑连接.AB弧的半径为R,BC弧的半径为.一小球在A点正上方与A相距处由静止开始自由下落,经A点沿圆弧轨道运动.图4(1)求小球在B、A两点的动能之比;(2)通过计算判断小球能否沿轨道运动到C点.答案 (1)5∶1 (2)能,理由见解析解析 (1)设小球的质量为m,小球在A点的动能为EkA,由机械能守恒得EkA=mg·①设小球在B点的动能为EkB,同理有EkB=mg·②由①②式得=5③(2)若小球能沿轨道运动到C点,小球在C点所受轨道的正压力FN应满足FN≥0④设小球在C点的速度大小为vC,由牛顿第二定律和向心加速度公式有FN+mg=m⑤由④⑤式得mg≤m⑥vC≥⑦n对全程由机械能守恒定律得mg·=mvC′2⑧由⑦⑧式可知,vC=vC′,即小球恰好可以沿轨道运动到C点.变式2 (2018·湖南省株洲市上学期质检一)如图5所示,半径为R的光滑圆周轨道AB固定在竖直平面内,O为圆心,OA与水平方向的夹角为30°,OB在竖直方向.一个可视为质点的小球从O点正上方某处以某一水平初速度向右抛出,小球恰好能无碰撞地从A点进入圆轨道内侧,此后沿圆轨道运动到达B点.已知重力加速度为g,求:(不计空气阻力)图5(1)小球初速度的大小;(2)小球运动到B点时对圆轨道压力的大小.答案 (1) (2)6mg解析 (1)设小球的初速度为v0,飞行时间为t,则在水平方向有Rcos30°=v0t在竖直方向有h1=gt2,vy=gt小球运动到A点时与轨道无碰撞,故tan30°=联立解得v0=,h1=R.(2)抛出点距轨道最低点的高度h=R+Rsin30°+h1设小球运动到最低点B时速度为v,圆轨道对小球的弹力为N,根据机械能守恒有mgh+mv02=mv2根据牛顿第二定律有N-mg=m联立解得N=6mg由牛顿第三定律得在B点时小球对圆轨道的压力大小为N′=N=6mg.命题点三 连接体的机械能守恒问题1.对多个物体组成的系统要注意判断物体运动过程中,系统的机械能是否守恒.n2.注意寻找用绳或杆相连接的物体间的速度关系和位移关系.3.列机械能守恒方程时,一般选用ΔEk=-ΔEp或ΔEA=-ΔEB的形式.例3 如图6所示,左侧竖直墙面上固定半径为R=0.3m的光滑半圆环,右侧竖直墙面上与圆环的圆心O等高处固定一光滑直杆.质量为ma=100g的小球a套在半圆环上,质量为mb=36g的滑块b套在直杆上,二者之间用长为l=0.4m的轻杆通过两铰链连接.现将a从圆环的最高处由静止释放,使a沿圆环自由下滑,不计一切摩擦,a、b均视为质点,重力加速度g=10m/s2.求:图6(1)小球a滑到与圆心O等高的P点时的向心力大小;(2)小球a从P点下滑至杆与圆环相切的Q点的过程中,杆对滑块b做的功.答案 (1)2N (2)0.1944J解析 (1)当a滑到与圆心O等高的P点时,a的速度v沿圆环切线竖直向下,b的速度为零,由机械能守恒可得:magR=mav2解得v=在P点对小球a,由牛顿第二定律可得:F==2mag=2N(2)杆与圆环相切时,如图所示,此时a的速度沿杆方向,设此时b的速度为vb,则知va=vbcosθ由几何关系可得:cosθ==0.8球a下降的高度h=Rcosθa、b及杆组成的系统机械能守恒:magh=mav+mbv-mav2对滑块b,由动能定理得:W=mbv=0.1944Jn变式3 (多选)(2018·贵州省贵阳市5月适应性二)如图7所示,不可伸长的轻绳通过定滑轮将物块甲、乙(均可视为质点)连接,物块甲套在固定的竖直光滑杆上,用外力使两物块静止,轻绳与竖直方向夹角θ=37°,然后撤去外力,甲、乙两物块从静止开始运动,物块甲恰能上升到最高点P,P点与滑轮上缘O在同一水平线上,甲、乙两物块质量分别为m、M,sin37°=0.6,cos37°=0.8,重力加速度为g,不计空气阻力,不计滑轮的大小和摩擦.设物块甲上升到最高点P时加速度为a,则下列说法正确的是( )图7A.M=2mB.M=3mC.a=gD.a=0答案 AC解析 设QP间的距离为h,OQ间的绳长L==,则乙下降的高度为h′=L-htan37°=,则根据机械能守恒定律可知mgh=Mgh′,解得M=2m,故A正确,B错误.甲上升到最高点P时,由于不受摩擦力,所以在竖直方向上只受重力,水平方向上弹力与绳子的拉力平衡,因此甲的加速度为g,故C正确,D错误.命题点四 含弹簧类机械能守恒问题1.由于弹簧的形变会具有弹性势能,系统的总动能将发生变化,若系统所受的外力(除重力外)和除弹簧弹力以外的内力不做功,系统机械能守恒.2.在相互作用过程特征方面,弹簧两端物体把弹簧拉伸至最长(或压缩至最短)时,两端的物体具有相同的速度,弹性势能最大.3.如果系统每个物体除弹簧弹力外所受合力为零,当弹簧为自然长度时,系统内弹簧某一端的物体具有最大速度(如绷紧的弹簧由静止释放).例4 (2016·全国卷Ⅱ·25)轻质弹簧原长为2l,将弹簧竖直放置在地面上,在其顶端将一质量为5m的物体由静止释放,当弹簧被压缩到最短时,弹簧长度为l.现将该弹簧水平放置,一端固定在A点,另一端与物块P接触但不连接.AB是长度为5l的水平轨道,B端与半径为l的光滑半圆轨道BCD相切,半圆的直径BD竖直,如图8所示.物块P与AB间的动摩擦因数μ=0.5.用外力推动物块P,将弹簧压缩至长度l,然后放开,P开始沿轨道运动,重力加速度大小为g.n图8(1)若P的质量为m,求P到达B点时速度的大小,以及它离开圆轨道后落回到AB上的位置与B点之间的距离;(2)若P能滑上圆轨道,且仍能沿圆轨道滑下,求P的质量的取值范围.答案 (1) 2l (2)m≤MμMg·4l⑩要使P仍能沿圆轨道滑回,P在圆轨道的上升高度不能超过半圆轨道的中点C.由机械能守恒定律有MvB′2≤Mgl⑪nEp=MvB′2+μMg·4l⑫联立①⑩⑪⑫式得m≤M