- 281.89 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
实验十四 探究单摆的运动、用单摆测定重力加速度1.实验原理当偏角很小时,单摆做简谐运动,其运动周期为T=2π,它与偏角的大小及摆球的质量无关,由此得到g=.因此,只要测出摆长l和振动周期T,就可以求出当地的重力加速度g的值.2.实验器材带有铁夹的铁架台、中心有小孔的金属小球、不易伸长的细线(约1m)、秒表、毫米刻度尺和游标卡尺.3.实验步骤(1)让细线的一端穿过金属小球的小孔,然后打一个比小孔大一些的线结,做成单摆.(2)把细线的上端用铁夹固定在铁架台上,把铁架台放在实验桌边,使铁夹伸到桌面以外,让摆球自然下垂,在单摆平衡位置处做上标记,如图1所示.图1(3)用毫米刻度尺量出摆线长度l′,用游标卡尺测出摆球的直径,即得出金属小球半径r,计算出摆长l=l′+r.(4)把单摆从平衡位置处拉开一个很小的角度(不超过5°),然后放开金属小球,让金属小球摆动,待摆动平稳后测出单摆完成30~50次全振动所用的时间t,计算出金属小球完成一次全振动所用时间,这个时间就是单摆的振动周期,即T=(N为全振动的次数),反复测3次,再算出周期的平均值=.n(5)根据单摆周期公式T=2π,计算当地的重力加速度g=.(6)改变摆长,重做几次实验,计算出每次实验的重力加速度值,求出它们的平均值,该平均值即为当地的重力加速度值.(7)将测得的重力加速度值与当地的重力加速度值相比较,分析产生误差的可能原因.1.注意事项(1)构成单摆的条件:细线的质量要小、弹性要小,选用体积小、密度大的小球,摆角不超过5°.(2)要使摆球在同一竖直面内摆动,不能形成圆锥摆,方法是将摆球拉到一定位置后由静止释放.(3)测周期的方法:①要从摆球过平衡位置时开始计时.因为此处速度大、计时误差小,而最高点速度小、计时误差大.②要测多次全振动的时间来计算周期.如在摆球过平衡位置时开始计时,且在数“零”的同时按下秒表,以后每当摆球从同一方向通过平衡位置时计数1次.(4)本实验可以采用图像法来处理数据.即用纵轴表示摆长l,用横轴表示T2,将实验所得数据在坐标平面上标出,应该得到一条倾斜直线,直线的斜率k=.这是在众多的实验中经常采用的科学处理数据的重要方法.2.数据处理处理数据有两种方法:(1)公式法:测出30次或50次全振动的时间t,利用T=求出周期;不改变摆长,反复测量三次,算出三次测得的周期的平均值,然后利用公式g=求重力加速度.(2)图像法:由单摆周期公式不难推出:l=T2,因此,分别测出一系列摆长l对应的周期T,作l-T2的图像,图像应是一条通过原点的直线,如图2所示,求出图线的斜率k=,即可利用g=4π2k求重力加速度.图2n3.误差分析(1)系统误差的主要来源:悬点不固定,球、线不符合要求,振动是圆锥摆而不是在同一竖直平面内的振动等.(2)偶然误差主要来自时间的测量,因此,要从摆球通过平衡位置时开始计时,不能多计或漏计全振动次数.命题点一 教材原型实验例1 某同学用实验的方法探究影响单摆周期的因素.(1)他组装单摆时,在摆线上端的悬点处,用一块开有狭缝的橡皮夹牢摆线,再用铁架台的铁夹将橡皮夹紧,如图3所示,这样做的目的是________(填字母代号).图3A.保证摆动过程中摆长不变B.可使周期测量更加准确C.需要改变摆长时便于调节D.保证摆球在同一竖直平面内摆动(2)他组装好单摆后在摆球自然悬垂的情况下,用毫米刻度尺从悬点量到摆球的最低端的长度L=0.9990m,再用游标卡尺测量摆球直径,结果如图4所示,则该摆球的直径为________mm,单摆摆长为________m.图4(3)下列振动图像真实地描述了对摆长约为1m的单摆进行周期测量的四种操作过程.图中横坐标原点表示计时开始,A、B、C均为30次全振动的图像,已知sin5°=0.087,sin15°=0.26,这四种操作过程合乎实验要求且误差最小的是________(填字母代号).n答案 (1)AC (2)12.0 0.9930 (3)A解析 (1)橡皮的作用是使摆线摆动过程中悬点位置不变,从而保证摆长不变,同时又便于调节摆长,A、C正确;(2)根据游标卡尺读数规则可得摆球直径为d=12mm+0.1mm×0=12.0mm,则单摆摆长为L0=L-=0.9930m(注意统一单位);(3)单摆摆角不超过5°,且计时位置应从最低点(即速度最大位置)开始,故A项的操作符合要求.变式1 某同学用单摆测当地的重力加速度.他测出了摆线长度L和摆动周期T,如图5(a)所示.通过改变悬线长度L,测出对应的摆动周期T,获得多组T与L,再以T2为纵轴、L为横轴画出函数关系图像如图(b)所示.由图像可知,摆球的半径r=________m,当地重力加速度g=________m/s2;由此种方法得到的重力加速度值与实际的重力加速度值相比会________(选填“偏大”“偏小”或“一样”)图5答案 1.0×10-2 9.86 一样命题点二 实验拓展与创新例2 (2015·天津理综·9(2))某同学利用单摆测量重力加速度.(1)为了使测量误差尽量小,下列说法正确的是________.A.组装单摆须选用密度和直径都较小的摆球B.组装单摆须选用轻且不易伸长的细线C.实验时须使摆球在同一竖直面内摆动D.摆长一定的情况下,摆的振幅尽量大(2)如图6所示,在物理支架的竖直立柱上固定有摆长约1m的单摆.实验时,由于仅有量程为20cm、精度为1mm的钢板刻度尺,于是他先使摆球自然下垂,在竖直立柱上与摆球最下端处于同一水平面的位置做一标记点,测出单摆的周期T1;然后保持悬点位置不变,设法将摆长缩短一些,再次使摆球自然下垂,用同样方法在竖直立柱上做另一标记点,并测出单摆的周期T2;最后用钢板刻度尺量出竖直立柱上两标记点之间的距离ΔL.用上述测量结果,写出重力加速度的表达式g=________.n图6答案 (1)BC (2)解析 (1)在利用单摆测重力加速度实验中,为了使测量误差尽量小,须选用密度大、半径小的摆球和不易伸长的细线,摆球须在同一竖直面内摆动,摆长一定时,振幅尽量小些,以使其满足简谐运动条件,故选B、C.(2)设第一次摆长为L,第二次摆长为L-ΔL,则T1=2π,T2=2π,联立解得g=.变式2 在“探究单摆的周期与摆长的关系”的实验中,摆球在垂直纸面的平面内摆动,如图7甲所示,在摆球运动最低点的左、右两侧分别放置一激光光源与光敏电阻.光敏电阻(光照时电阻比较小)与某一自动记录仪相连,该仪器显示的光敏电阻阻值R随时间t的变化图线如图乙所示,则该单摆的振动周期为________.若保持悬点到小球顶点的绳长不变,改用直径是原小球直径2倍的另一小球进行实验,则该单摆的周期将________(选填“变大”“不变”或“变小”).图7答案 2t0 变大解析 单摆在一个周期内两次经过平衡位置,每次经过平衡位置,单摆会挡住细激光束,从R-t图线可知周期为2t0.摆长等于摆线的长度加上小球的半径,根据单摆的周期公式T=n2π,摆长变大,所以周期变大.