- 77.64 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
课下层级训练(五十一) 随机事件的概率[A级 基础强化训练]1.把红、黑、蓝、白4张纸牌随机地分发给甲、乙、丙、丁四个人,每人分得1张,事件“甲分得红牌”与事件“乙分得红牌”是( )A.对立事件 B.不可能事件C.互斥事件但不是对立事件D.以上答案都不对答案 C2.我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为( )A.134石B.169石C.338石D.1365石B [这批米内夹谷约为×1534≈169石.]3.甲、乙两人下棋,两人下成和棋的概率是,甲获胜的概率是,则甲不输的概率为( )A. B. C. D.A [事件“甲不输”包含“和棋”和“甲获胜”这两个互斥事件,所以甲不输的概率为+=.]4.设事件A,B,已知P(A)=,P(B)=,P(A∪B)=,则A,B之间的关系一定为( )A.两个任意事件B.互斥事件C.非互斥事件D.对立事件B [因为P(A)+P(B)=+==P(A∪B),所以A,B之间的关系一定为互斥事件.]5.掷一个骰子的试验,事件A表示“出现小于5的偶数点”,事件B表示“出现小于5的点”,若表示B的对立事件,则一次试验中,事件A+发生的概率为( )A.B.C.D.C [掷一个骰子的试验有6种可能的结果.n依题意知P(A)==,P(B)==,∴P()=1-P(B)=1-=,∵P()表示“出现5点或6点”,因此事件A与P()互斥,从而P(A+)=P(A)+P()=+=.]6.已知某运动员每次投篮命中的概率都为40%,现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器产生0到9之间取整数值的随机数,指定1,2,3,4表示命中,5,6,7,8,9,0表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了如下20组随机数:907 966 191 925 271 932 812 458 569 683431 257 393 027 556 488 730 113 537 989据此估计,该运动员三次投篮恰有两次命中的概率为__________.0.25 [20组随机数中表示三次投篮恰好有两次命中的是191,271,932,812,393,其频率为=0.25,以此估计该运动员三次投篮恰有两次命中的概率为0.25.]7.经统计,在银行一个营业窗口每天上午9点钟排队等候的人数及相应概率如下表:排队人数01234≥5概率0.10.160.30.30.10.04则该营业窗口上午9点钟时,至少有2人排队的概率是__________.0.74 [由表格可得至少有2人排队的概率P=0.3+0.3+0.1+0.04=0.74.]8.国家射击队的队员为在射击世锦赛上取得优异成绩,正在加紧备战,经过近期训练,某队员射击一次命中7~10环的概率如下表所示:命中环数10环9环8环7环概率0.320.280.180.12求该射击队员射击一次:(1)射中9环或10环的概率;(2)命中不足8环的概率.解 记事件“射击一次,命中k环”为Ak(k∈N,k≤10),则事件Ak之间彼此互斥.(1)记“射击一次,射中9环或10环”为事件A,那么当A9,A10之一发生时,事件A发生,由互斥事件的加法公式得P(A)=P(A9)+P(A10)=0.28+0.32=0.6.(2)设“射击一次,至少命中8环”的事件为B,则表示事件“射击一次,命中不足8环”.又B=A8∪A9∪A10,由互斥事件概率的加法公式得P(B)=P(A8)+P(A9)+P(A10)n=0.18+0.28+0.32=0.78.故P()=1-P(B)=1-0.78=0.22.因此,射击一次,命中不足8环的概率为0.22.9.(2019·湖北七市联考)某电子商务公司随机抽取1000名网络购物者进行调查.这1000名购物者2017年网上购物金额(单位:万元)均在区间[0.3,0.9]内,样本分组为:[0.3,0.4),[0.4,0.5),[0.5,0.6),[0.6,0.7),[0.7,0.8),[0.8,0.9],购物金额的频率分布直方图如下:电子商务公司决定给购物者发放优惠券,其金额(单位:元)与购物金额关系如下:购物金额分组[0.3,0.5)[0.5,0.6)[0.6,0.8)[0.8,0.9]发放金额50100150200(1)求这1000名购物者获得优惠券金额的平均数;(2)以这1000名购物者购物金额落在相应区间的频率作为概率,求一个购物者获得优惠券金额不少于150元的概率.解 (1)购物者的购物金额x与获得优惠券金额y的频率分布如下表:x0.3≤x<0.50.5≤x<0.60.6≤x<0.80.8≤x≤0.9y50100150200频率0.40.30.280.02这1000名购物者获得优惠券金额的平均数为(50×400+100×300+150×280+200×20)=96.(2)由获得优惠券金额y与购物金额x的对应关系及(1)知P(y=150)=P(0.6≤x<0.8)=0.28,P(y=200)=P(0.8≤x≤0.9)=0.02,从而,获得优惠券金额不少于150元的概率为P(y≥150)=P(y=150)+P(y=200)=0.28+0.02=0.3.[B级 能力提升训练]10.某河流上的一座水力发电站,每年六月份的发电量Y(单位:万千瓦时)与该河上游在六月份的降雨量X(单位:毫米)有关.据统计,当X=70时,Y=460;X每增加10,Y增n加5.已知近20年X的值为140,110,160,70,200,160,140,160,220,200,110,160,160,200,140,110,160,220,140,160.(1)完成如下的频率分布表:近20年六月份降雨量频率分布表降雨量70110140160200220频率(2)假定今年6月份的降雨量与近20年六月份降雨量的分布规律相同,并将频率视为概率,求今年六月份该水力发电站的发电量低于490(万千瓦时)或超过530(万千瓦时)的概率.解 (1)在所给数据中,降雨量为110毫米的有3个,为160毫米的有7个,为200毫米的有3个,故近20年六月份降雨量频率分布表为降雨量70110140160200220频率(2)由已知可得Y=+425,故P(“发电量低于490万千瓦时或超过530万千瓦时”)=P(Y<490或Y>530)=P(X<130或X>210)=P(X=70)+P(X=110)+P(X=220)=++=.11.某商场有奖销售中,购满100元商品得1张奖券,多购多得.1000张奖券为一个开奖单位,设特等奖1个,一等奖10个,二等奖50个.设1张奖券中特等奖、一等奖、二等奖的事件分别为A,B,C,求:(1)P(A),P(B),P(C);(2)1张奖券的中奖概率;(3)1张奖券不中特等奖且不中一等奖的概率.解 (1)P(A)=,P(B)==,P(C)==.故事件A,B,C的概率分别为,,.(2)1张奖券中奖包含中特等奖、一等奖、二等奖.设“1张奖券中奖”这个事件为M,则M=A∪B∪C.n∵A,B,C两两互斥,∴P(M)=P(A∪B∪C)=P(A)+P(B)+P(C)==.故1张奖券的中奖概率为.(3)设“1张奖券不中特等奖且不中一等奖”为事件N,则事件N与“1张奖券中特等奖或中一等奖”为对立事件,∴P(N)=1-P(A∪B)=1-=.故1张奖券不中特等奖且不中一等奖的概率为.12.(2016·全国卷Ⅱ)某险种的基本保费为a(单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:上年度出险次数01234≥5保费0.85aa1.25a1.5a1.75a2a随机调查了该险种的200名续保人在一年内的出险情况,得到如下统计表:出险次数01234≥5频数605030302010(1)记A为事件:“一续保人本年度的保费不高于基本保费”,求P(A)的估计值;(2)记B为事件:“一续保人本年度的保费高于基本保费但不高于基本保费的160%”,求P(B)的估计值;(3)求续保人本年度平均保费的估计值.解 (1)事件A发生当且仅当一年内出险次数小于2.由所给数据知,一年内出险次数小于2的频率为=0.55,故P(A)的估计值为0.55.(2)事件B发生当且仅当一年内出险次数大于1且小于4.由所给数据知,一年内出险次数大于1且小于4的频率为=0.3,故P(B)的估计值为0.3.(3)由所给数据得保费0.85aa1.25a1.5a1.75a2a频率0.300.250.150.150.100.05调查的200名续保人的平均保费为0.85a×0.30+a×0.25+1.25a×0.15+1.5a×0.15+1.75a×0.10+2a×0.05=1.1925a.因此,续保人本年度平均保费的估计值为1.1925a.n