• 62.75 KB
  • 2022-04-12 发布

七年级数学下册第六章实数6.3实数备课资料素材(新版)

  • 3页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
实数知识点1:无理数1.定义:无限不循环小数叫做无理数.2.表现形式:(1)开方开不尽得到的数如: 、等;(2)含有π的式子;(3)有规律但不循环的无限小数,如:0.1010010001…;注意:对于实数的分类,不能只看形式,并非所有带根号的数都是无理数,应严格按照有理数和无理数的定义来判定,如为有理数.知识点2:实数的概念(1)定义:有理数和无理数统称实数.例如:-6,,,0.4,π等都是实数.(2)实数的分类总结:(1)实数的相反数的意义和有理数的相反数的意义一样,如果a表示任意一个实数,那么-a就是a的相反数,即a与-a互为相反数,例如:的相反数是-,的相反数是-.另外,规定0的相反数仍然是0;(2)实数的绝对值的意义与有理数的绝对值的意义一样,一个正实数的绝对值是它本身;一个负实数的绝对值是它的相反数;0的绝对值是0,用字母表示为:对于任意实数a,有|a|=知识点3:实数与数轴1.对应关系:实数与数轴上的点一一对应.2.与有理数相同,数轴上右边的点表示的数总比左边的点表示的数大.总结:(1)利用数轴可以比较实数的大小,在数轴上,右边的点表示的实数总比左边的点表示的实数大;(2)正实数大于0,负实数小于0,正实数大于一切负实数,两个负实数比较大小,绝对值大的反而小.知识点4:实数的性质在实数范围内的相反数、倒数、绝对值的意义和在有理数范围内的相反数、倒数、绝对值的意义完全一样.知识点5:实数的运算n(1)实数有加、减、乘、除、乘方、开方运算,混合运算的顺序是先算乘方、开方,再算乘、除,最后算加、减,同级运算按照从左到右的顺序进行,有括号的要先算括号里的;(2)加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c);乘法交换律:ab=ba;乘法结合律:(ab)c=a(bc);乘法分配律:a(b+c)=ab+ac.总之有理数的一切运算法则适用于实数的运算.考点1:实数概念的应用【例1】下列各数:-5,3.7,,,,-π,,0.3,-,0.2121121112…(每两个2之间依次多一个1)哪些是有理数?哪些是无理数?哪些是正实数?哪些是负实数?解:有理数有:-5,3.7,,,0.3,-;无理数有:,-π,,0.2121121112…(每两个2之间依次多一个1);正实数有:3.7,,,0.3,,,0.2121121112…(每两个2之间依次多一个1);负实数有:-5,-,-π.考点2:实数的大小比较【例2】比较2,,的大小,正确的是(  )  A.2<<                 B.2<7,∴2>.故选C.考点3:用数轴比较数的大小【例3】 在数轴上表示下列各数,并把它们按从小到大的顺序排列起来,用“<”连接:-0.,-,.n解:-0.,-,在数轴上表示,如图所示.        由图得到:-<-0.<.点拨:对于-,可以通过画边长为1的正方形的对角线得到.考点4:实数的运算【例4】计算:(1)(+)×;(2)--;(3)-(精确到0.01);(4)+ (