- 65.95 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
等腰三角形的判定导学活动教学目标:知识与能力了解等腰三角形的边角定义。理解并掌握等腰三角形的基本性质,并会利用相关性质解决简单的几何证明和实际问题。过程与方法经历运用剪纸法探究等腰三角形的定义的过程,培养动手操作能力、观察能力、抽象归纳能力。经历实例思考和推证等腰三角形的判定定理的过程,培养灵活运用定理进行证明和解决简单实际问题的能力。情感、态度和价值观经历通过探究发现规律的过程,感受数学学习的乐趣,激发数学学习的兴趣。经历通过应用等腰三角形的相关性质解决实际问题的过程,体会数学与现实的密切联系,感受数学的应用价值,培养应用意识。教学重点、难点重点:等腰三角形的定义,等腰三角形的性质和应用难点:等腰三角形性质的发现教学设计:一、多媒体展示如下问题,请学生探究n过程形式个人备课集体研讨与个案补充导学按照上图所示的操作步骤,请学生两人一组用手中的白纸、剪刀进行操作。学生可能的回答:剪出是一个三角形,有两个相同的三角形构成。剪出的图形是一个轴对称图形,沿着对称轴折叠,两个小三角形可以完全重合。两个小三角形是全等三角形。等等教师肯定学生的表现,总结出如下有关等腰三角形的概念,引出本节课的主题------等腰三角形。有两边相等的三角形叫做等腰三角形二、探究等腰三角形的性质1.教师强调前面有学生已经指出等腰三角形是轴对称图形,为了验证这一说法,请学生把剪出的等腰三角形ABC沿折痕对折,找出其中重合的线段和角,填入下表:n活动过重合的线段重合的角 填完之后,提问:你能发现等腰三角形的性质吗?请学生根据上表形成有关等腰三角形性质的猜想。4.师生共同分析,讨论总结出等腰三角形的性质。(1)等腰三角形的两个底角相等(简写成“等边对等角”).(2)等腰△的顶角平分线,底边上的中线、底边上的高互相重合(通常称作“三线合一”).5.教师提示:由上面的操作过程获得启发,我们可以通过作出三角形ABC的对称轴,得到两个全等三角形,从而利用三角形的全等证明这些性质。6.鼓励学生独立思考,请学生上黑板证明,师生共同分析讨论,教师作总结发言,给出问题的证明过程。形式个人备课集体研讨与个案补充7.多媒体展示如下例题例1.如图,在△ABC中,AB=AC,点D在AC上,且BD=BC=AD,求△ABC各角的度数。nABCD请学生尝试解答。解:∵AB=AC,BD=BC=AD,∴∠ABC=∠C=∠BDC,∠A=∠ABD(等边对等角)设∠A=x,则∠BDC=∠A+∠ABD=2x,从而∠ABC=∠C=∠BDC=2x,于是在△ABC中,有∠A+∠ABC+∠C=x+2x+2x=180°,解得x=36°,在△ABC中,∠A=36°,∠ABC=∠C=72°教师提醒学生注意书写过程中需要注意的问题三、运用等腰三角形的性质解决问题1.多媒体展示思考题。如图,位于在海上A.B两处的两艘救生船接到O处遇险船只的报警,当时测得∠A=∠B.如果这两艘救生船以同样的速度同时出发,能不能大约同时赶到出事地点(不考虑风浪因素)?形个人备课集体研讨与个案补n式充2.出示例2求证:如果三角形一个外角的平分线平行于三角形的一边,那么这个三角形是等腰三角形.注意命题的证明格式,请学生尝试自己证明。3.出示例3如图(1),标杆AB的高为5米,为了将它固定,需要由它的中点C向地面上与点B距离相等的D.E两点拉两条绳子,使得D.B.E在一条直线上,量得DE=4米,绳子CD和CE要多长?注意分析应用四、小结巩固五、作业:反思n