- 68.28 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
分式的乘除【学习目标】1.学会用类比的方法总结出分式的乘法、除法法则.2.会分式的乘法、除法运算.3.掌握乘方的意义,能根据乘方的法则,先乘方,再乘除进行分式运算.【要点梳理】要点一、分式的乘除法1.分式的乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为积的分母.用字母表示为:,其中是整式,.2.分式的除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘.用字母表示为:,其中是整式,.要点诠释:(1)分式的乘除法都能统一成乘法,然后约去公因式,化为最简分式或整式.(2)分式与分式相乘,若分子和分母是多项式,则先分解因式,看能否约分,然后再乘.(3)整式与分式相乘,可以直接把整式(整式可以看作分母是1的代数式)和分式的分子相乘作为分子,分母不变.当整式是多项式时,同样要先分解因式,便于约分.(4)分式的乘除法计算结果,要通过约分,化为最简分式或整式.要点二、分式的乘方分式的乘方运算法则:分式的乘方是把分子、分母分别乘方,用字母表示为:(为正整数).要点诠释:(1)分式乘方时,一定要把分式加上括号.不要把写成(2)分式乘方时,要首先确定乘方结果的符号,负数的偶次方为正,负数的奇次方为负.(3)在一个算式中同时含有分式的乘方、乘法、除法时,应先算乘方,再算乘除,有多项式时应先分解因式,再约分.(4)分式乘方时,应把分子、分母分别看作一个整体.如.n【典型例题】类型一、分式的乘法1.已知x-3y=0,求的值.【思路点拨】先把分母分解因式,并运用分式的乘法法则约分、化简,再把x=3y代入可求分式的值.【答案与解析】解:原式==∵x-3y=0,∴x=3y.∴当x=3y时,原式=.【总结升华】本题考查综合运用分式的乘法法则,约分化简分式,并根据已知条件式求分式的值.举一反三:【变式】已知分式,计算的值.【答案】解:.∵,∴,且,即且,解得,,此时.∴原式.类型二、分式的除法n2.课堂上,李老师给同学们出了这样一道题:当,,时,求代数式的值.小明一看,“太复杂了,怎么算呢?”你能帮小明解决这个问题吗?请你写出具体的过程.【思路点拨】分式求值问题的解题思路是先化简,再代入求值,一般情况下不直接代入,本题所给的的值虽然有的较为复杂,但化简分式后即可发现结果与字母的取值无关.【答案与解析】解:.所以无论取何值,代数式的值均为,即代数式的值与的取值无关.所以当,,时,代数式的值都是.【总结升华】本题实际就是一道普通的分式化简求值题,只是赋予情景,增加兴趣,要通过认真审题,领会解决问题的实质.举一反三:【变式】已知,其中不为0,求的值.【答案】解:原式==.∵,∴.∴原式=.∵不为0,∴原式=.类型三、分式的乘方n3.计算:.【思路点拨】先进行乘方运算,再计算乘法运算即可得到结果.【答案与解析】解:原式==.【总结升华】分式乘方时也可以先确定符号,再将分子、分母分别乘方.类型四、分式的乘除法、乘方混合运算4.若等于它的倒数,求的值.【答案与解析】解:∵等于它的倒数,∴解得∴时,原式=;时,原式=.【总结升华】乘除混合运算,首先把除法运算转化为乘法运算,再用乘法运算法则计算.有乘方的,先算乘方,注意符号的处理.