• 341.77 KB
  • 2022-04-12 发布

七年级数学下册第五章相交线与平行线5.3平行线的性质作业(新版)新人教版

  • 11页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
平行线的性质1.下列图形表示平面内直线AB∥CD的是(  )A.B.C.D.2.下列说法正确的是(  )A.同一平面内没有公共点的两条线段平行B.两条不相交的直线是平行线C.同一平面内没有公共点的两条线平行D.同一平面内没有公共点的两条射线平行3.经过直线外一点画直线,下列说法错误的是(  )A.可以画无数条直线与这条直线相交B.可以画无数条直线与这条直线平行C.能且只能画一条直线与这条直线平行D.能且只能画一条直线与这条直线垂直4.如图,写出图中所有的平行线:________.n5.根据下列要求画图:(1)如图①,过点A画MN∥BC;(2)如图②,过点P画PE∥OB,交OA于点E;(3)如图③,过点C画CE∥DA,交AB于点E,交DB于点H;过点C画CF∥DB,交AB的延长线于点F.6.在同一平面内,一条直线与另外两条平行直线的位置关系是(  )A.一定与两条平行直线相交B.与两条平行直线中的一条平行,而与另一条相交C.一定与两条平行直线平行D.与两条平行直线都平行或都相交7.下列说法:①一条直线的平行线只有一条;②过一点与已知直线平行的直线只有一条;③因为a∥b,c∥d,所以a∥d;④经过直线外一点,有且只有一条直线与这条直线平行.其中,正确的有(  )A.1个B.2个C.3个D.4个8.A.B.c是平面上的任意三条直线,它们的交点可以有(  )A.1个或2个或3个nB.0个或1个或2个或3个C.1个或2个D.以上都不正确9.已知直线A.b都过点M,且直线a∥l,b∥l,那么直线A.b是同一条直线,根据是________.10.将一张长方形的硬纸片ABCD对折后打开,折痕为EF,把长方形ABEF平摊在桌面上.另一面CDFE无论怎样改变位置,总有CD∥AB,理由是________.11.如图,P为直线AB外一点,读下列语句画图形:(1)过点P画PC⊥AB,垂足为C;(2)过点P画PD∥AB;(3)观察图形,猜想PC与PD的位置关系(不要求说明理由).12.如图,直线AB.CD是一条河的两岸,并且AB∥CD,E为直线AB.CD外一点,现想过点E画岸CD的平行线,只需过点E画岸AB的平行线即可.画图,并说明理由.13.如图,AD∥BC,AE=BE.n(1)过点E画EF∥BC,交DC于点F.(2)AD与EF平行吗?为什么?(3)通过测量,试判断等式DF=CF与是否成立.答案1.B2.C3.B4.AB∥CD,EF∥BH5.略6.D7.A8.B9.经过直线外一点,有且只有一条直线与已知直线平行10.如果两条直线都与第三条直线平行,那么这两条直线也互相平行11.(1)如图所示 (2)如图所示 (3)PC⊥PD12.图略 理由:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.13.(1)略 (2)略 (3)两个等式都成立n平行线的性质1.平面内两条________的直线叫平行线,如果直线a与直线b平行可记为______,读作_________.2.经过直线外一点,__________与这条直线平行.3.如果两条直线和第三条直线______,那么这两条直线平行;若a∥b,b∥c,则_______.4.在同一平面内,不互相重合的两条直线位置关系有_____种,它们是____,______.5.在同一平面内L1与L2没有公共点,则L1______L2.6.在同一平面内L1和L2有一个公共点,则L1与L2______.7.在同一平面内,不重合的两条直线的位置关系有_______种,分别是________.8.(经典题)设a,b,c为平面内三条不同直线:(1)若a∥b,c⊥a,则b与c的位置关系是______;(2)若a∥b,b∥c,则a与c的位置关系是______.9.(合作探究题)在同一平面内三条直线交点有多少个?甲:同一平面三直线相交交点的个数为0个,因为a∥b∥c,如图(1)所示.乙:同一平面内三条直线交点个数只有1个,因为a,b,c交于同一点O,如图(2)所示.以上说法谁对谁错?为什么?n10.请举出一例生活中平行线的例子,如笔直铁路上铁轨是互相平行的直线.举例:__________________n参考答案1.不相交,a∥b,a平行于b2.有且只有一条直线3.都平行,a∥c4.2,相交,平行5.∥6.相交7.2,相交,平行8.(1)b⊥C(2)a∥c(点拨:画图来判定)9.甲,乙说法都不对,各自少了三种情况.a∥b,c与a,b相交如图(1),a,b,c两两相交如图(2),所以三条直线互不重合,交点有0个或1个或2个或3个,共四种情况.解题规律:三条直线在同一平面的位置关系有四种情况,有1个交点,2个交点,3个交点和0个交点.10.窗户的柱子平行线的性质1.公路两旁的两根电线杆位置关系是________.2.练习本中的横线格中的横线段是_______,如图所示.3.如图所示,AB∥CD,EF与AB,CD相交,EF与AB交于点_____,EF与CD交于______.4.下列说法不正确的是()A.过马路的斑马线是平行线B.100米跑道的跑道线是平行线C.若a∥b,b∥d,则a⊥dD.过直线外一点有且只有一条直线与已知直线平行n5.下列说法正确的是()A.同一平面内不相交的两线段必平行B.同一平面内不相交的两射线必平行C.同一平面内不相交的一条线段与一条直线必平行D.同一平面内不相交的两条直线必平行6.如图所示,在这些四边形AB不平行于CD的是()7.(原创题)如图所示,在∠AOB内有一点P.(1)过P画L1∥OA;(2)过P画L2∥OB;(3)用量角器量一量L1与L2相交的角与∠O的大小有怎样关系?8.如图所示,在5×5的网格中,AC是网格中最长的线段,请画出两条线段与AC平行并且过网格的格点.9.(教材变式题)“垂直于同一条直线的两直线平行”,运用这一性质可以说明铺设铁轨互相平行的道理.如图所示,已知∠2是直角,再度量出∠1或∠3就会知道铁轨平行不平行?方案一:若量得∠3=90°,结合∠2情况,说明理由.方案二:若量得∠1=90°,结合∠2情况,说明理由.n10.(原创题)如图所示,在书写艺术字时,常常运用画“平行线段”这种基本作图方法,此图是在书写字“M”:(1)请从正面,上面,右侧三个不同方向上各找出一组平行线段,并用字母表示出来;(2)EF与A′B′有何位置关系?CC′与DH有何位置关系?n参考答案1.平行关系2.互相平行的线段3.M,N4.C(点拨:用平行线定义来判定)5.D(点拨:A,B,C都有可能相交).6.D(点拨:A是平行四边形,B是梯形,C是正方形.)7.(1),(2)如图所示,(3)L1与L2夹角有两个,∠1,∠2,∠1=∠O,∠2+∠O=180°,所以L1和L2夹角与∠O相等或互补.思路点拨:注意∠2与∠O是互补关系,易漏掉.8.如图所示:EF∥AC,PQ∥AC,MN∥AC,且它们都过格点.解题技巧:过网格格点,EF,PQ,MN与竖直线AB都成45°角,AC与AB成45°,由同位角相等得两直线平行.9.方案一:如果量∠3=90°,而∠2=90°∴两铁轨都与枕木垂直,那么两铁轨就平行.方案二:如果量得∠1=90°,而∠2=90°,∴两铁轨都与枕木垂直,那么两铁轨就平行.思路点拨:运用已知定理及垂直的定义来说明.10.(1)正面:AB∥EF,AE∥MF等等;上面:A′B′∥AB,C′D′∥CD等等;右侧:DD′∥HR,DH∥D′Rn(2)EF∥A′B′,CC′⊥DH思路点:(1)在同一平面的两线段平行,假设延长看有无交点;(2)不在同一平面的线段位置关系判断,可通过两个平面的交线来判定.

相关文档