- 467.11 KB
- 2022-04-12 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
功和功率全国卷3年考情分析考点内容考纲要求三年考题201620172018功和功率Ⅱ卷ⅢT20,动能定理卷ⅢT24,机械能守恒定律卷ⅡT16,动能定理卷ⅠT24,机械能,功能关系卷ⅢT16,功能关系卷ⅡT24,动能定理卷ⅠT18,功能关系卷ⅡT14,动能定理卷ⅢT19,功率、动能定理动能和动能定理Ⅱ重力做功与重力势能Ⅱ功能关系、机械能守恒定律及其应用Ⅱ实验:探究动能定理实验:验证机械能守恒定律卷ⅠT22第1讲 功和功率 [基础知识·填一填][知识点1] 功 1.做功的两个必要条件(1)作用在物体上的 力 .(2)物体在 力的方向 上发生的位移.2.公式:W= Flcos_α (1)α是力与 位移 方向之间的夹角,l为物体对地的位移.(2)该公式只适用于 恒力 做功.(3)功是 标 量.3.功的正负判断夹角功的正负α<90°力对物体做 正功 α>90°力对物体做 负功 ,或者说物体 克服 这个力做了功α=90°力对物体 不做功 判断正误,正确的划“√”,错误的划“×”.n(1)只要物体受力的同时又有位移发生,则一定有力对物体做功.(×)(2)一个力对物体做了负功,则说明这个力一定阻碍物体的运动.(√)(3)滑动摩擦力可能做负功,也可能做正功;静摩擦力对物体一定不做功.(×)(4)作用力做正功时,反作用力一定做负功.(×)[知识点2] 功率 1.定义功与完成这些功所用时间的 比值 .物理意义:描述力对物体 做功的快慢 .2.公式(1)P=,P为时间t内的 平均功率 .(2)P=Fvcosα(α为F与v的夹角)①v为平均速度,则P为 平均功率 .②v为瞬时速度,则P为 瞬时功率 .3.额定功率机械 正常工作 时的最大输出功率.4.实际功率机械 实际工作 时的功率,要求不大于额定功率.判断正误,正确的划“√”,错误的划“×”.(1)由P=,只要知道W和t就可求出任意时刻的功率.(×)(2)由P=Fv,既能求某一时刻的瞬时功率,也可以求平均功率.(√)(3)由P=Fv知,随着汽车速度的增大,它的功率也可以无限制地增大.(×)(4)由P=Fv知,当汽车发动机功率一定时,牵引力与速度成反比.(√)[教材挖掘·做一做]1.(人教版必修2P60第2题改编)用起重机将质量为m的物体匀速吊起一段距离,那么作用在物体上的各力做功情况应是下列说法中的哪一种?( )A.重力做正功,拉力做负功,合力做功为零B.重力做负功,拉力做正功,合力做正功C.重力做负功,拉力做正功,合力做功为零D.重力不做功,拉力做正功,合力做正功答案:C2.(人教版必修2nP59第1题改编)如图所示,两个物体与水平地面间的动摩擦因数相等,它们的质量也相等,在甲图中用力F1拉物体,在乙图中用力F2推物体,夹角均为α,两个物体都做匀速直线运动,通过相同的位移.设F1和F2对物体所做的功分别为W1和W2,物体克服摩擦力做的功分别为W3和W4,下列判断正确的是( )A.F1=F2B.W1=W2C.W3=W4D.W1-W3=W2-W4答案:D3.(人教版必修2P63第34题改编)(多选)发动机额定功率为80kW的汽车,质量为2×103kg,在水平路面上行驶时汽车所受摩擦阻力恒为4×103N,若汽车在平直公路上以额定功率启动,则下列说法中正确的是( )A.汽车的加速度和速度都逐渐增加B.汽车匀速行驶时,所受的牵引力为零C.汽车的最大速度为20m/sD.当汽车速度为5m/s时,其加速度为6m/s2解析:CD [由P=Fv,F-Ff=ma可知,在汽车以额定功率启动的过程中,F逐渐变小,汽车的加速度a逐渐减小,但速度逐渐增加,当匀速行驶时,F=Ff,此时加速度为零,速度达到最大值,则vm==m/s=20m/s,故A、B错误,C正确;当汽车速度为5m/s时,由牛顿第二定律得-Ff=ma,解得a=6m/s2,故D正确.]考点一 功的正负判断及恒力做功的计算[考点解读]1.功的正负的判断方法(1)恒力做功的判断:依据力与位移方向的夹角来判断.(2)曲线运动中做功的判断:依据F与v的方向夹角α来判断,0°≤α<90°时,力对物体做正功;90°<α≤180°时,力对物体做负功;α=90°时,力对物体不做功.(3)依据能量变化来判断:功是能量转化的量度,若有能量转化,则必有力对物体做功.此法常用于判断两个相联系的物体之间的相互作用力做功的判断.2.恒力做功的计算方法n3.合力做功的计算方法方法一:先求合力F合,再用W合=F合lcosα求功.方法二:先求各个力做的功W1、W2、W3、…,再应用W合=W1+W2+W3+…求合力做的功.[典例赏析][典例1] (2017·全国卷Ⅱ)如图,一光滑大圆环固定在桌面上,环面位于竖直平面内,在大圆环上套着一个小环.小环由大圆环的最高点从静止开始下滑,在小环下滑的过程中,大圆环对它的作用力( )A.一直不做功B.一直做正功C.始终指向大圆环圆心D.始终背离大圆环圆心[解析] A [由于大圆环是光滑的,因此小环下滑的过程中,大圆环对小环的作用力方向始终与速度方向垂直,因此作用力不做功,A项正确,B项错误;小环刚下滑时,大圆环对小环的作用力背离大圆环的圆心,滑到大圆环圆心以下的位置时,大圆环对小环的作用力指向大圆环的圆心,C、D项错误.][题组巩固]1.图甲为一女士站在台阶式自动扶梯上匀速上楼(忽略扶梯对手的作用),图乙为一男士站在履带式自动扶梯上匀速上楼,两人相对扶梯均静止.下列关于力做功判断正确的是( )A.甲图中支持力对人做正功B.甲图中摩擦力对人做负功C.乙图中支持力对人做正功D.乙图中摩擦力对人做负功解析:nA [图甲中,人匀速上楼,不受静摩擦力,摩擦力不做功,支持力向上,与速度方向夹角为锐角,则支持力做正功,故A正确,B错误;图乙中,支持力与速度方向垂直,支持力不做功,摩擦力方向与速度方向相同,做正功,故C、D错误.]2.物体在平行于斜面向上的拉力作用下,分别沿倾角不同斜面的底端,匀速运动到高度相同的顶端,物体与各斜面间的动摩擦因数相同,则( )A.沿倾角较小的斜面拉,拉力做的功较多B.沿倾角较大的斜面拉,克服重力做的功较多C.无论沿哪个斜面拉,拉力做的功均相同D.无论沿哪个斜面拉,克服摩擦力做的功相同解析:A [由平衡条件得F-mgsinθ-μmgcosθ=0,解得F=mgsinθ+μmgcosθ,F做的功为W=FL=(mgsinθ+μmgcosθ)=mgh+μmghcotθ,因为m、h、μ相等,所以θ越小,W越大,故A正确;重力做功只与高度差有关,高度相等,所以克服重力做功相等,故B错误;拉力做功W=mgh+μmghcotθ,θ越小,拉力做功越多,故C错误;克服摩擦力做的功Wf=μmgcosθ·L=μmgcosθ·=,所以倾角越大,克服摩擦力做的功越少,故D错误.]3.如图所示,质量为m的小球用长为L的轻绳悬挂于O点,用水平恒力F拉着小球从最低点运动到使轻绳与竖直方向成θ角的位置,求此过程中,各力对小球做的总功为( )A.FLsinθB.mgL(1-cosθ)C.FLsinθ-mgL(1-cosθ)D.FLsinθ-mgLcosθ解析:C [如图,小球在F方向的位移为CB,方向与F同向,则WF=F·CB=F·Lsinθ小球在重力方向的位移为AC,方向与重力反向,则WG=mg·AC·cos180°=-mg·L(1-cosθ)n绳的拉力FT时刻与运动方向垂直,则WFT=0故W总=WF+WG+WFT=FLsinθ-mgL(1-cosθ)所以选项C正确.]考点二 功率的理解与计算[考点解读]功率的计算方法[典例赏析][典例2] (多选)一质量为1kg的质点静止于光滑水平面上,从t=0时刻开始,受到水平外力F作用,如图所示.下列判断正确的是( )A.0~2s内外力的平均功率是4WB.第2s内外力所做的功是4JC.第2s末外力的瞬时功率最大D.第1s末与第2s末外力的瞬时功率之比为9∶4[解析] AD [第1s末质点的速度v1=t1=×1m/s=3m/s.第2s末质点的速度v2=v1+t2=m/s=4m/s.则第2s内外力做功W2=mv-mv=3.5J0~2s内外力的平均功率nP==W=4W.选项A正确,选项B错误;第1s末外力的瞬时功率P1=F1v1=3×3W=9W,第2s末外力的瞬时功率P2=F2v2=1×4W=4W,故P1∶P2=9∶4,选项C错误,选项D正确.] 求解功率时应注意的“三个”问题1.首先要明确所求功率是平均功率还是瞬时功率,对应于某一过程的功率为平均功率,对应于某一时刻的功率为瞬时功率.2.求功率大小时要注意F与v方向的夹角α对结果的影响.3.用P=Fcosα求平均功率时,应容易求得,如求匀变速直线运动中某力的平均功率.[题组巩固]1.(2019·漳州模拟)(多选)如图,质量为M=72kg的重物放置在水平地面上,柔软不可伸长的轻绳跨过光滑轻质滑轮,绳一端连接重物,另一端被质量为m=60kg的人抓住,起初绳子恰好处于竖直绷紧状态,人通过抓绳以a=4m/s2的加速度竖直攀升2m,g取10m/s2,则此过程( )A.重物的加速度为2m/s2B.绳子的拉力为840NC.人的拉力所做的功为2380JD.拉力对重物做功的平均功率为700W解析:BCD [对人由牛顿第二定律得F-mg=ma,解得F=mg+ma=840N,对物体由牛顿第二定律得F-Mg=Ma′,解得a′=m/s2,故A错误,B正确;上升2m人获得的速度v==4m/s,经历的时间t==1s,重物上升的高度h′=a′t2=m,获得的速度v′=a′t=m/s,对人和重物组成的整体,根据动能定理得W-mgh-Mgh′=mv2+Mv′2,解得W=2380J,故C正确;拉力对重物做功W=Mgh′+Mv′2,平均功率nP==700W,故D正确.]2.(2019·齐齐哈尔模拟)(多选)如图所示,质量相同的甲、乙两个小物块,甲从竖直固定的光滑圆弧轨道顶端由静止滑下,轨道半径为R,圆弧底端切线水平,乙从高为R的光滑斜面顶端由静止滑下.下列判断正确的是( )A.两物块到达底端时速度相同B.两物块到达底端时动能相同C.乙物块运动到底端的过程中重力做功的瞬时功率一直在增大D.甲物块运动到底端的过程中重力做功的瞬时功率先增大后减小解析:BCD [根据动能定理得mgR=mv2,知两物块到达底端的动能相等,速度大小相等,但是速度的方向不同,故A错误,B正确;根据P=mgv竖直,可知乙物块重力做功的瞬时功率随速度的增大而增大,故C正确;甲的竖直分速度先增大后减小,重力的功率先增大后减小,故D正确.]3.(2019·昆明七校调研)(多选)物体受到水平推力F的作用在粗糙水平面上做直线运动.通过力和速度传感器监测到推力F、物体速度v随时间t变化的规律分别如图甲、乙所示.取g=10m/s2,则下列说法正确的是( )A.物体的质量m=0.5kgB.物体与水平面间的动摩擦因数μ=0.4C.第2s内物体克服摩擦力做的功W=2JD.前2s内推力F做功的平均功率=3W解析:ABC [由题图甲、乙可知,在1~2s内,推力F2=3N,物体做匀加速直线运动,其加速度a=2m/s2,由牛顿运动定律可得,F2-μmg=ma;在2~3s,推力F3=2N,物体做匀速直线运动,由平衡条件可知,μmg=F3;联立解得物体的质量m=0.5kg,物体与水平面间的动摩擦因数μ=0.4,A、B正确;由速度-时间图象所围的“面积”表示位移可得,第2s内物体位移x=1m,克服摩擦力做的功Wf=μmgx=2J,C正确;第1s内,由于物体静止,推力不做功;第2s内,推力做功W=F2x=3J,即前2s内推力Fn做功为W′=3J,前2s内推力F做功的平均功率==W=1.5W,D错误.]考点三 机车启动问题[考点解读]1.两种启动方式的比较两种方式以恒定功率启动以恒定加速度启动P-t图和v-t图OA段过程分析v↑⇒F=↓⇒a=↓a=不变⇒F不变P=Fv↑直到P额=Fv1运动性质加速度减小的加速直线运动匀加速直线运动,维持时间t0=AB段过程分析F=F阻⇒a=0⇒F阻=v↑⇒F=↓⇒a=↓运动性质以vm匀速直线运动加速度减小的加速运动BC段无F=F阻⇒a=0⇒以vm=匀速运动2.四个常用规律(1)P=Fv.(2)F-Ff=ma.(3)v=at(a恒定).(4)Pt-Ffx=ΔEk(P恒定).3.三个重要结论(1)无论哪种启动过程,机车的最大速度都等于其匀速运动时的速度,即vm==(式中Fmin为最小牵引力,其值等于阻力F阻).(2)机车以恒定加速度启动的运动过程中,匀加速过程结束时,功率最大,速度不是最大,即v=<vm=.n(3)机车以恒定功率运行时,牵引力做的功W=Pt.由动能定理:Pt-F阻x=ΔEk.此式经常用于求解机车以恒定功率启动过程的位移大小.[典例赏析][典例3] 目前,上海有若干辆超级电容车试运行,运行中无需连接电缆,只需在乘客上车间隙充电30秒到1分钟,就能行驶3到5千米.假设有一辆超级电容车,质量m=2×103kg,额定功率P=60kW,当超级电容车在平直水平路面上行驶时,受到的阻力Ff是车重的0.1倍,g取10m/s2.(1)超级电容车在此路面上行驶所能达到的最大速度是多少?(2)若超级电容车从静止开始,保持以0.5m/s2的加速度做匀加速直线运动,这一过程能维持多长时间?(3)若超级电容车从静止开始,保持额定功率做加速运动,50s后达到最大速度,求此过程中超级电容车的位移.[审题指导] (1)当电容车速度达到最大时,电容车的牵引力与阻力等大反向.(2)电容车以恒定加速度启动,匀加速运动结束时,电容车刚好达到额定功率,应满足P=Fv.(3)电容车以恒定功率启动过程,牵引力所做的功应用W=Pt求解.[解析] (1)当电容车速度达到最大时电容车的牵引力与阻力平衡,即F=FfFf=kmg=2000NP=Ffvm解得:vm==30m/s(2)电容车做匀加速运动,由牛顿第二定律得:F1-Ff=ma解得:F1=3000N设电容车刚达到额定功率时的速度为v1,P=F1v1v1==20m/s设电容车匀加速运动的时间为t,则:v1=at解得:t==40s(3)从静止到最大速度整个过程牵引力与阻力做功,由动能定理得:Pt2-Ffx=mv.解得:x=1050m[答案] (1)30m/s (2)40s (3)1050mn[题组巩固]1.汽车发动机的额定功率为P1,它在水平路面上行驶时受到阻力Ff大小恒定,汽车由静止开始做直线运动,最大车速为v,汽车发动机的输出功率随时间变化的图象如图所示.下列说法正确的是( )A.开始时汽车牵引力恒定,t1时刻牵引力与阻力大小相等B.开始时汽车牵引力逐渐增大,t1时刻牵引力与阻力大小相等C.开始汽车做匀加速运动,t1时刻速度达到v,然后做匀速直线运动D.开始汽车做匀加速直线运动,t1时刻后做加速度逐渐减小的直线运动,速度达到v后做匀速直线运动解析:D [在0~t1时间内,汽车发动机的功率均匀增大,故汽车以恒定加速度启动,牵引力是恒定的,汽车做匀加速直线运动,t1时刻达到额定功率,根据P=Fv可知,t1时刻后汽车速度增大,牵引力减小,则由牛顿第二定律a=可知加速度减小,汽车做加速度减小的加速运动,当加速度为零时,即牵引力等于阻力时,汽车速度达到最大,此后汽车做匀速直线运动,故选项D正确,A、B、C错误.]2.(多选)如图甲所示,静止在水平面上的物体在竖直向上的拉力F作用下开始向上加速运动,拉力的功率恒定为P,运动过程中所受空气阻力大小不变,物体最终做匀速运动,物体运动速度的倒数与加速度a的关系如图乙所示.若重力加速度大小为g,下列说法正确的是( )A.物体的质量为B.空气阻力大小为C.物体加速运动的时间为D.物体匀速运动的速度大小为v0解析:ABD [由题意可知P=Fv,根据牛顿第二定律,由F-mg-Ff=ma,联立解得=na+,由乙图可知,=,=,解得m=,Ff=,故A、B正确;物体做变加速运动,并非匀加速运动,不能利用v=at求得时间,故C错误;物体匀速运动时F=mg+Ff,此时v===v0,故D正确.]3.(2018·全国卷Ⅲ)(多选)地下矿井中的矿石装在矿车中,用电机通过竖井运送到地面.某竖井中矿车提升的速度大小v随时间t的变化关系如图所示,其中图线①②分别描述两次不同的提升过程,它们变速阶段加速度的大小都相同;两次提升的高度相同,提升的质量相等.不考虑摩擦阻力和空气阻力.对于第①次和第②次提升过程( )A.矿车上升所用的时间之比为4∶5B.电机的最大牵引力之比为2∶1C.电机输出的最大功率之比为2∶1D.电机所做的功之比为4∶5解析:AC [在v-t图象中,图线的斜率表示物体运动的加速度,而两次提升过程变速阶段加速度的大小都相同,即在v-t图象中,它们变速阶段对应的图线要么重合,要么平行,由图中几何关系可得:第②次所用时间t=t0,即矿车上升所用时间之比为4∶5,选项A正确;对矿车受力分析可知,当矿车向上做匀加速直线运动时,电机的牵引力最大,即F-mg=ma,得F=mg+ma,即最大牵引力之比为1∶1,选项B错误;在第①次提升过程中,电机输出的最大功率P1=(mg+ma)v0,在第②次提升过程中,电机输出的最大功率P2=(mg+ma)·v0,即=,选项C正确;对①②两次提升过程,由动能定理可知W-mgh=0,即=,选项D错误.] 思想方法(八) 变力做功的求解方法方法阐述方法 以例说法n应用动能定理用力F把小球从A处缓慢拉到B处,F做功为WF,则有:WF-mgl(1-cosθ)=0,得WF=mgl(1-cosθ)微元法质量为m的木块在水平面内做圆周运动,运动一周克服摩擦力做功Wf=f·Δx1+f·Δx2+f·Δx3+…=f(Δx1+Δx2+Δx3+…)=f·2πR平均力法弹簧由伸长x1被继续拉至伸长x2的过程中,克服弹力做功W=·(x2-x1)图象法水平拉力F0拉着一物体在水平面上运动的位移为x0,图线与横轴所围“面积”表示拉力所做的功,W=F0x0转化法通过转换研究对象把变力转化为恒力做功,Δl=l1-l2=hWT=WF=FΔl=Fh[题组巩固]1.(动能定理法)如图,一半径为R的半圆形轨道竖直固定放置,轨道两端等高;质量为m的质点自轨道端点P由静止开始滑下,滑到最低点Q时,对轨道的正压力为2mg,重力加速度大小为g.质点自P滑到Q的过程中,克服摩擦力所做的功为( )A.mgR B.mgRC.mgRD.mgR解析:C [在Q点,FN-mg=,所以v=;由P到Q根据动能定理得mgR-Wf=mv2,解得Wf=mgR,故C正确.]2.(微元法)(多选)如图所示,小球质量为m,一不可伸长的悬线长为l,把悬线拉到n水平位置后放手,设小球运动过程中空气阻力Fm大小恒定,则小球从水平位置A到竖直位置B的过程中,下列说法正确的是( )A.重力不做功B.悬线的拉力不做功C.空气阻力做功为-FmlD.空气阻力做功为-Fmπl解析:BD [重力在整个运动过程中始终不变,小球在重力方向上的位移为l,所以WG=mgl,故A错误;因为拉力FT在运动过程中始终与运动方向垂直,拉力不做功,故B正确;Fm所做的总功等于每个小弧段上Fm所做功的代数和,运动的弧长为πl,故阻力做的功为WFm=-(FmΔx1+FmΔx2+…)=-Fmπl,故C错误,D正确.]3.(平均力法)(多选)如图所示,n个完全相同、边长足够小且互不粘连的小方块依次排列,总长度为l,总质量为M,它们一起以速度v在光滑水平面上滑动,某时刻开始滑上粗糙水平面.小方块与粗糙水平面之间的动摩擦因数为μ,若小方块恰能完全进入粗糙水平面,则摩擦力对所有小方块所做功的大小为( )A.Mv2 B.Mv2C.μMglD.μMgl解析:AC [总质量为M的小方块在进入粗糙水平面的过程中滑动摩擦力由0均匀增大,当全部进入时摩擦力达最大值μMg,总位移为l,平均摩擦力为f=μMg,由功的公式可得Wf=-fl=-μMgl,功的大小为μMgl,故C正确,D错误;对所有小方块运动过程由动能定理得Wf=0-Mv2,解得Wf=-Mv2,则功的大小为Mv2,故A正确,B错误.]4.(图象法)(多选)在某一粗糙的水平面上,一质量为2kg的物体在水平恒定拉力的作用下做匀速直线运动,当运动一段时间后,拉力逐渐减小,且当拉力减小到零时,物体刚好停止运动,图中给出了拉力随位移变化的关系图象.已知重力加速度g=10m/s2n.根据以上信息能精确得出或估算得出的物理量有( )A.物体与水平面间的动摩擦因数B.合外力对物体所做的功C.物体做匀速运动时的速度D.物体运动的时间解析:ABC [物体做匀速直线运动时,拉力F与滑动摩擦力f相等,物体与水平面间的动摩擦因数为μ==0.35,故A正确;减速过程由动能定理得WF+Wf=0-mv2,根据F-x图象中图线与坐标轴围成的面积可以估算力F做的功WF,而Wf=-μmg,由此可求得合外力对物体所做的功,及物体做匀速运动时的速度v,故B、C正确;因为物体做变加速运动,所以运动时间无法求出,故D错误.]5.(转化法)如图所示,水平粗糙地面上的物体被绕过光滑定滑轮的轻绳系着,现以大小恒定的拉力F拉绳的另一端,使物体从A点起由静止开始运动.若从A点运动至B点和从B点运动至C点的过程中拉力F做的功分别为W1、W2,图中AB=BC,且动摩擦因数处处相同,则在物体的运动过程中( )A.摩擦力增大,W1>W2B.摩擦力减小,W1<W2C.摩擦力增大,W1<W2D.摩擦力减小,W1>W2解析:D [物体受力如图所示,由平衡条件得FN+Fsinθ=mg,滑动摩擦力Ff=μFN=μ(mg-Fsinθ),物体从A向C运动的过程中细绳与水平方向夹角θ增大,所以滑动摩擦力减小,由于物体被绕过光滑定滑轮的轻绳系着,拉力为恒力,所以拉力做的功等于细绳对物体所做的功,根据功的定义式W=FLcosθ,θ增大,F不变,在相同位移L上拉力F做的功减小,故D正确,A、B、C错误.]n