加减法速算法 10页

  • 22.49 KB
  • 2022-06-14 发布

加减法速算法

  • 10页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
加减法速算法练习先计算,再找规律。  例1:口算:56+99=()  简算:56+99先把99看作整百数是()  =56+(100)-(1)因为整百数比原数多加(1),所以要减(1)。  试练:先口算,再简算。  67+197=  148+298=  783+999=  67+197=   148+298=  783+999=规律一:两数相加想一想,看哪个最近整百(千)数,多加几要减()。  例2:口算:56+102=()  简算:56+102先把102看作整百数是()  =56+()○()因为整百数比原数少加(),所以再加()。  试练:先口算,再简算。  67+107=  148+208=  783+1005=  67+107   148+208  783+1005规律二:两数相加想一想,看哪个最近整百(千)数,少加几再()。  例3:口算:256-199=()  简算:256-199先把199看作整百数是()  =256-()○()因为整百数比原数多减(),所以要加()。  试练:先口算,再简算。  267-199=   348-298=  2283-999=  267-199   348-298   2283-999  \n规律三:两数相减看减数,哪个最近整百(千)数,多减几要()。  例4:口算:256-102=()  简算:256-102先把102看作整百数是(),  =256-()○()因为整百数比原数少减了(),所以再减()。  试练:先口算,再简算。  267-107=  348-208=   1783-1005=  267-107   348-208   1783-1005规律四:两数相减看减数,哪个最近整百(千)数,少减几()。改变运算顺序速算  在只有加减运算的算式中,有时改变加、减的运算顺序可使计算显得十分巧妙!  例计算  10-9+8-7+6-5+4-3+2-1  解:这题如果从左到右按顺序进行加减运算,是能够得出正确结果的。但因为算式较长,多次加减又繁又慢且容易出错。如果改变一下运算顺序,先减后加,就使运算显得非常“漂亮”。下式括号中的算式表示先算,  10-9+8-7+6-5+4-3+2-1  =(10-9)+(8-7)+(6-5)+(4-3)+(2-1)  =1+1+1+1+1=5\n一步法加减法速算  “一位法”指导学生自己检查计算结果是否有错,可以马上改正,节省时间,多做功课。  “一步法”主要不列竖式,采用横式一步到位,用脑子计算,辅以左手记进位数,直接横式写答数,原来许多步数,现在一步到位,其效果神奇非凡,其好处不言而语。。。  一.加法应用“一步法”:  1.加法时可将其和为10相关数字先加,例如3与7,2与8,或1、4与5各数字可先加,以便计算。  例一.67+83+28+84=262  (4+2+1+3=1;262→1,1=1。)  思路:个位数7,3,8,4,=22;(左手进二)  十位数6,8,2,8,2,=26;  [注意]:上面计算时个位数进“2”到十位数,十位数进“2”到百位数。  2.位数较多的数相加时,可将各数分成左右二部分别相加再求和。  例二.3567+4836+3284=11687 (3+3+8=14→5;11687→5;5=5。)  (思路:67+36+84)+(35+48+32)×100=187+11500=11687  3.相加各数中有若干数右端由数字9、8、7组成,可由正负加减法,再前部和减去后部和。  例三.9978+2897+7789=10000-22+3000-103+8000-211  =10000+3000+8000-(22+103+211)  =21000-336=20664。  (6+8+4=0→0;20664→0;0=0。)  4.如相加各数为连续数,可首项加末项乘项数之半,即得其和。  例四.895+896+897+898+899+900+901=(895+901)×7/2=898×7=6286。\n  (4+5+6+7+8+9+1=40→4;6286→4;4=4。)  5.相加各数中若数值较大而相差不多,可先将最小数与各数之差相加,再以项数与最小数相乘,两者之和即其和。  例五.543+545+548+553+557+561+564=543×7+2+5+10+14+18+21  =1038+70=1108。  3+5+8+4+8+3+6=37→1;1108→1;1=1。  二.减法速算“一步法”:  6.全球减法有三种:英美法、意大利法及反数法。例如求8与3之差,依英美法定义,从8个拿去3个,得5个。(反数法下面另讲)。先讲英美法:  例六.857-(65+48+53+96)=857-262=595→1;2–1=1;1=1。  7.依意大利法定义,因减法为加法还原,即问3个上加几个为8个,得5个。  意大利法:减数262加多少?等于被减数857。  例七.262+595=857→2;1+1=2;2=2。  [说明]:此法在国外非常流行,例如在欧洲商店购物32.87元,付100元,店员往往给你1角3分,口说33元;再给你7元,口说40元;最后给你60元,;说100元。他们就是按照减法为加法还原。好处:非常便利,不用计算,实际上是运用了“十进位补数法”。  8.减法除英美法与头等法外,尚有反数法。此法过去在学者专家研究时经常使用,民间用之颇少。所谓“反数”即正整数补数。  例八.857补数为143,写成1143,564写成1436。  例九.3857-752-934-128=3857+1248+1066-128=2043  5-5–7–2=→0;2043→0;0=0。\n加减法速算练习  在计算整数加减法时,通常可以用下列方法进行速算:  1、在计算加、减法时,如果某些数接近整十、整百、整千……,我们可以把这些数看作整十、整百、整千……的数来计算,然后根据具体情况进行调整。  2、在计算连加、连减和加减混合运算时,我们可以应用加法的运算定律和减法的运算性质使计算简便。遇到含有小括号的加减混合运算,如果括号前面是“+”号,去掉小括号,则不改变括号里面的运算符号;如果括号前面是“-”号,去掉小括号,则括号里的运算符号要改变。  例1、用简便方法计算:  299+86 541+1002      873-398      4853-703  试一试1:用简便方法计算下面各题:  398+27336+1021873-2974825-1003  例2、用用简便方法计算:  93+88+90+87+91+89+92+94  试一试2:用简便方法计算:  97+104+101+99+100+103+98  例3、用简便方法计算:  99999+9999+999+99+9  试一试3:用简便方法求和  19999+1999+199+19  例4、用简便方法计算下面各题:  446+72+154+328    857-294-306   957+234-257    359-298+441\n  试一试4:用简便方法计算  724+55+645+176    953-267-133   426+755-226    362-199+238  例5、用简便方法计算:  534+(266-197)   4480-(955+480)   573-(242-127)  试一试5:用简便方法计算  187+(313-202)   5570-(2870+570)   597-(327-203)  例6、用简便方法计算:  1000-90-10-80-20-70-30-60-40-50-50  试一试6:巧算  1000-99-1-98-2-97-3-96-4-95-5  练习:用简便方法计算下面各题  1、827+4978732-20082004+271    574-396  2、198+204+201+199+200+203  3、8+98+998+9998+99998  4、89+123+11+177   425-173-27   871+97-271   388-199+312  5、421+(297-125)  785-(231+285)   328-(198-172)6、1000-81-19-82-18-83-17-84-16-85-15\n用已知求未知速算  利用已经获得较简单的知识来解决面临的更复杂的难题这是人们认识事物的一般过程,凑十法、凑整法的实质就是这个道理,可见把这种认识规律用于计算方面,可使计算更快更准。下面再举两个例子。  例1计算  1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20  解:由例2和例3,已经知道从1开始的前10个单数之和以及从2开始的前10个双数之和,巧用这些结果计算这道题就容易了。  1+2+3+4+5+6+7+8+9+10+11+12+13+14+15+16+17+18+19+20  =(1+3+5+7+9+11+13+15+17+19)+(2+4+6+8+10+12+14+16+18+20)  =100+110(这步利用了例2和例3的结果)  =210  例2计算5+6+7+8+9+10  解:可以利用前10个自然数之和等于55这一结果。  5+6+7+8+9+10  =(1+2+3+4+5+6+7+8+9+10)-(1+2+3+4)  (熟练后,此步骤可省略)=55-10=45\n凑整法速算  同学们知道,有些数相加之和是整十、整百的数,如:1+19=202+18=203+17=204+16=205+15=206+14=207+13=208+12=209+11=2011+9=3012+28=4013+37=5014+46=6015+55=7016+64=8017+73=9018+82=10015+85=100 14+86=10025+75=100 24+76=10035+65=100  34+66=10045+55=100  44+56=100等等  巧用这些结果,可以使那些较大的数相加又快又准。像10、20、30、40、50、60、70、80、90、100等等这些整十、整百的数就是凑整的目标。  例2计算  1+3+5+7+9+11+13+15+17+19  解:这是求1到19共10个单数之和,用凑整法做:  例3计算  2+4+6+8+10+12+14+16+18+20  解:这是求2到20共10个双数之和,用凑整法做:  例4计算  2+13+25+44+18+37+56+75  解:用凑整法:\n凑十法速算同学们已经知道,下面的五组成对的数相加之和都等于10:  1+9=10  2+8=10  3+7=10  4+6=10  5+5=10  巧用这些结果,可以使计算又快又准。  例1计算  1+2+3+4+5+6+7+8+9+10  解:对于这道题,当然可以从左往右逐步相加:  1+2=33+3=6  6+4=1010+5=15  15+6=2121+7=28  28+8=3636+9=45  45+10=55  这种逐步相加的方法,好处是可以得到每一步的结果,但缺点是麻烦、容易出错;而且一步出错,以后步步都错。若是利用凑十法,就能克服这种缺点。\n带着加减号搬家的速算  例计算  1-2+3-4+5-6+7-8+9-10+11  解:这题只有加减运算,而且1-2不够减。我们可以采用带着加减号搬家的方法解决。要注意每个数自己的符号就是这个数前面的那个“+”号或“-”号,搬家时要带着符号一起搬。  1-2+3-4+5-6+7-8+9-10+11  =1+3-2+5-4+7-6+9-8+11-10  =1+(3-2)+(5-4)+(7-6)+(9-8)+(11-10)[先减后加]  =1+1+1+1+1+1  =6  在这道题的运算中,把“+3”搬到“-2”的前面,把“+5”搬到了“-4”的前面,……把“+11”搬到了“-10”的前面,这就叫带着符号搬家。巧妙利用这种搬法,可以使计算简便。

相关文档