• 68.50 KB
  • 2022-06-18 发布

小学奥数余数问题练习题集1

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
五年级奥数:带余数除法(A)年级班姓名得分一、填空题1.小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8.正确的商是_____,余数是_____.2.a24=121……b,要使余数最大,被除数应该等于_____.3.一个三位数被37除余17,被36除余3,那么这个三位数是_____.4.393除以一个两位数,余数为8,这样的两位数有_____个,它们是_____.5.3145368765987657的积,除以4的余数是_____.6.888……8乘以666……6的积,除以7余数是_____.50个850个67.如果时针现在表示的时间是18点整,那么分针旋转1990圈之后是_____点钟.8.甲、乙、丙、丁四个小朋友玩报数游戏,从1起按下面顺序进行:甲报1、乙报2、丙报3、丁报4、乙报5、丁报6、甲报7、乙报8、丙报9,……,这样,报1990这个小朋友是_____.9.如果按红、橙、黄、绿、青、蓝、紫的顺序,将19921992……1992只彩灯依次反复排列,那么_____颜色的彩1991个1992灯必定要比其他颜色的彩灯少一只.10.从7开始,把7的倍数依次写下去,一直写到994成为一个很大的数:71421……987994.这个数是_____位数.二、解答题\n11.幼儿园某班学生做游戏,如果每个学生分得的弹子一样多,弹子就多12颗,如果再增加12颗弹子,那么每个学生正好分得12颗,问这班有多少个学生?原有多少颗弹子?12.已知:a=199119911991……1991,问:a除以13,余1991个1991数是几?13.100个7组成的一百位数,被13除后,问:(1)余数是多少?(2)商数中各位数字之和是多少?14.有一个数,甲将其除以8,乙将其除以9.甲所得的商数与乙所得的余数之和为13.试求甲所得的余数.———————————————答案——————————————————————1.48,44.依题意得被除数=7854+8=4220而4220=8748+44,所以正确的商是48,余数是44.2.2927因为余数一定要比除数小,所以余数最大为23,故有被除数=24121+23=29273.831这个三位数可以写成37商+17=36商+(商+17).根据“被36除余3”.(商+17)被36除要余3.商只能是22(如果商更大的话,与题目条件“三位数”不符合).因此,这个三位数是3722+17=831.4.4;11,35,55,77\n393减8,那么差一定能被两位数整除.∵393-8=385385=5711=(57)11=(511)7=(711)5∴385能被两位数11,35,55,77整除.本题的答案是4个:11,35,55,77.5.1∵314534=7863…1687654=17191…19876574=246914…1111=1∴3145368765987657的积除以4余数是1.6.5因为111111能被7整除,所以888888和666666均能被7整除.而50=68+2,故得被乘数与88被7除的余数相同,乘数与66被7除的余数相同,进而得:被乘数被7除余4,乘数被7除余3.所以乘积与(43=)12被7整除的余数相同.因此得乘积被7除的余数是5.7.16因为分针旋转一圈为一个钟头,所以分针旋转24圈,时针旋转2圈.若以现时18点整为起点与终点,这样时针又回到18点整的位置上.由199024=82…余22,可知那时时钟表示的时间应是16点整.8.丁根据小朋友报数顺序列表如下:甲乙丙丁123456789101112………………………\n由上表可知每6个数号为一组的报数的规律.由19906=331…4,根据余数是4可知报1990的小朋友是丁.9.紫考虑通过试除发现规律后求彩灯总数被7除的余数即可.经试除得:199219921992能被7整除,而1991被3除余2,所以彩灯总数与19921992被7除的余数相同,均为6.所以,紫色的彩灯要比其它颜色的彩灯少一只.10.411∵97=1…2∴一位数中能被7整除的数有1个;∵997=14…1∴两位数中能被7整除的数有(14-1=)13个;∵9997=142…5∴三位数中能被7整除的数有142-13-1=128(个)所以,这个数的位数为1+132+1283=41111.依题意知,原来每个学生分相等的若干颗,余12颗,则学生人数大于12.同时由增加12颗后每个学生正好分得12颗,即12+12=24(颗),24能被班级人数整除,又24能分解为24=124=212=38=46由班级人数大于12,可知符合题意的是24人.所以,共有弹子数1224-12=276(颗).12.用试除的方法可知:199119911991可以被13除尽.原数a有1991个1991.因为1991除以3余2,所以a与19911991除以13所得余数相同.又19911991除以13余8,所以a除以13的余数也是8.13.因为77777713=59829,即777777能被13整除,把这100个7,从第一个起,每6个分成一组,1006=16…4,共16组还多4个.每一组除以13的商都是59829,7777除以13的商是598,余数是3.所以,100个7组成一百位数除以13后,余数是3,商数中各位数字之和是\n(5+9+8+2+9)16+(5+9+8)=55014.设甲所得的商和余数分别为a和b,乙所得的商和余数分别为c和d,于是由题意知8a+b=9c+d,a+d=13.将d=13-a代入前一式并整理后即得9(a-c)=13-b上式左端是9的倍数,因此13-b也是9的倍数.由于b是被8除的余数,所以b介于0与7之间.故b=4.

相关文档