- 171.49 KB
- 2022-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
学习好资料欢迎下载学习好资料欢迎下载【学习目标】0702《功》导学案学习好资料欢迎下载1.初步熟识做功与能量变化的关系;2.知道做功的两个要素,懂得功的概念,写出功的公式和单位;3.知道功是标量、知道负功的两种等价说法;4.会依据公式运算多个力的总功;【重点难点】1.知道W=Flcosα的适用范畴;2.初步懂得正功、负功的物理意义;【学问链接】1.能量(1)伽利略在斜面小球试验中,发觉一个启示性的事实:无论斜面陡或缓,小球总会在斜面上的某点停下来,这点距斜面底端的竖直高度与它动身时的高度.在物理学中,我们把这一事实说成是“某一量是的”,并且把这个量叫做或.(2)相互作用的物体凭借其位置而具有的能量叫做.(3)物体由于运动而具有的能量叫做.2.功(1)一个物体受到力的作用,并在发生了一段位移,就说这个力对物体做了功.(2)力和物体在上发生的,是做功的两个不行缺少的因素.假如力的方向与位移的方向一样,功等于力的大小与位移大小的乘积,公式是.(3)如力F与位移l之间成α角时,力所做的功W=,即力对物体所做的功,等于.(4)功的单位是,符号是.(5)功是标量.3.正功与负功(1)依据功的运算公式W=Flcosα可得以下几种情形:①当α=90°时,cosα=0,就W0,即力对物体.②当0°≤α<90°时,cosα>0,就W0,即力对物体.③当90°<α≤180°时,cosα<0,就W0,即力对物体或.(2)功的正负既不表示方向,也不表示大小,它表示.4.总功当物体在几个力共同作用下发生一段位移时,这几个力对物体所做的总功,等于.可以证明,它也就是.【问题探究】1.甲、乙、丙三位同学分别提着同样的一桶水,甲静止不动;乙在水平面上匀速走动;丙提水上楼.三位同学对水桶的拉力都做功了吗?2.摩擦力确定做负功吗?3.功有正负之分,是否说明功是矢量?如功不是矢量那么正负又有什么含义呢?1.对功的公式W=Flcosθ的懂得(1)各字母符号的意义,F作用在物体上的力,恒力,单位N,l是力的作用点的对位置移,矢量,单位m,cosθ是力与位移l正方向之间夹角θ的余弦.(2)对整式的剖析懂得:①W=Fl·cosθ,lcosθ是位移l在力F方向的重量,思想\n学习好资料欢迎下载方法:分解位移.②W=Fcosθ·l,Fcosθ是力F在l方向上的重量,思想方法:分解力.特别提示:(1)这两种思想方法是等效的,在应用时可依据具体的问题情形灵敏选用恰当的方法.(2)W=Flcosθ是恒力对物体做功的公式(适用条件)对变力做功不能直接使用.2.对正功、负功的熟识如图7-2-1所示,物体沿光滑水平面对右由位置1运动到位置2的过程中,力F1做的功W1=F1lcosθ1>0,即F1对物体做正功,同时我们看到F1促进了物体的运动;力F2做的功W2=F2lcosθ2<0,即F2对物体做负功,同时力F2阻碍了物体的运动.所以,功的正负只表示力是促进物体运动仍是阻碍物体运动,即功的正负表示力的作用成效,而不表示方向,功是标量.图7-2-13.对摩擦力做功的争辩在相当多的问题里,摩擦力都阻碍物体运动,对物体做负功,这就很简洁给人一种感觉——摩擦力确定做负功,实际上,因摩擦力的方向与物体的运动方向之间没有必定的联系所以摩擦力可以做负功,也可以做正功.也可以不做功,下面按静摩擦力的功和滑动摩擦力的功分述如下:(1)静摩擦力的功例如,光滑水平面上放着一辆平板车,车上放一物体A,用力F拉动车上的物体A,B与A一起以相同的速度前进,且A与B间无相对滑动,就静摩擦力F0对A做负功,F0′对B做正功,如图7-2-2所示.图7-2-2由于,A受到的静摩擦力F0与A的位移l反向,即F0对A做的功WA=F0lcos180°=-F0l<0;B受到的静摩擦力F0′与B的位移l同向,F0′对B做的功WB=F0′lcos0°=F0′l>0.例如,放在匀速转动圆盘上伴同盘M一起转动的物体C,它受的向心力是静摩擦力Ff,Ff对物体C不做功.由于,静摩擦力Ff在任一时刻都与速度方向垂直,即在Ff的方向没有发生位移,所以Ff不做功,如图7-2-3所示.学习好资料欢迎下载(2)滑动摩擦力的功图7-2-3学习好资料欢迎下载设光滑水平面上放一质量为M的平板车,一质量为m的物体以速度v沿平板车表面飞入,当m在车表面滑行距离为L时,平板车前进了l远,这时m与M相对静止,如图7-2-4所示,争辩此过程中滑动摩擦力对m与M做什么功.\n学习好资料欢迎下载图7-2-4解析:以m为争辩对象,它受的滑动摩擦力为F,F对m做的功W=F(l+L)cos180°=-F(l+L)<0,即滑动摩擦力F对m做负功.以M为争辩对象,它受的滑动摩擦力为F′(F′为F的反作用力),F′对M做的功W′=F′lcos0°=F′l>0,即滑动摩擦力F′对M做正功.点评:无论静摩擦力仍是滑动摩擦力,均可以做正功,也可以做负功,甚至不做功.【典型例题】应用点一:功的运算例1:止在光滑水平面上的物体质量为2.5kg,在与水平方向成60°角斜向上的力F作用下运动了10s,已知F=10N,求10s内力F所做的功.(g=10m/s2)思路分析:由功的运算公式W=Flcosα进行求解.解析:物体受力如图7-2-5.依据牛顿其次定律得:Fcos60°=ma①学习好资料欢迎下载10s内物体位移l=10s内力F做的功W=Flcos60°③解①②③得1at2,②2图7-2-5学习好资料欢迎下载学习好资料欢迎下载222Ftcos60W=2m=500J.学习好资料欢迎下载答案:500J误区警示:功的运算公式W=Flcosα中的力F必需是恒力时才能用该公式求功.另外,α为力F与位移l方向的夹角.应用点二:总功的求解例2:如图7-2-6所示,质量为m的物体沿倾角为α的粗糙斜面下滑了一段距离s,物体与斜面间的动摩擦因数为μ,试求物体所受各力在下滑过程中对物体所做的功及这些力所做的总功.学习好资料欢迎下载图7-2-6思路分析:先由W=Flcosα求各力的功,然后求这些功的代数和即为这些力所做的总功.解析:物体受力分析如图7-2-7支持力FN=mgcosα图7-2-7\n学习好资料欢迎下载由滑动摩擦力Ff=μFN故Ff=μmgcosα依据功的定义可得,重力对物体所做的功WGWG=mgssinα斜面支持力对物体做的功WNWN=mgscosα·cos90°=0滑动摩擦力对物体所做的功WfWf=μmgscosα·cos180°=-μmgscosα所以这些力所做的总功为WW=WG+WN+Wf=mgs(sinα-μcosα).思维总结:解决总功问题,第一应留意功是标量.所以,我们求解几个力对物体所做的总功,可先求每个力做的功,再求其代数和,即为总功;当然也可先求几个力的合力,再求合力所做的功.应用点三:摩擦力做功例3:如图7-2-8质量为M的长木板B被固定在水平面上,一个质量为m的滑块A以某一速度沿木板表面由C点滑至D点,在木板上前进了L,如滑块与木板间动摩擦因数为μ,求摩擦力对滑块、对木板做功各为多少?图7-2-8思路分析:我们应先确定木板和滑块的位移后,再依据功的定义式求摩擦力做的功.解析:由于木板被固定,所以木板的位移s1=0依据功的定义可得,摩擦力对木板做功WB=0滑块A受到的摩擦力Ff方向水平向左,与运动方向相反,Ff应做负功Wf=-FfL又Ff=μFN=μmg故Wf=-μmgL.误区警示:摩擦力可以做正功,也可以做负功,甚至不做功.不要错误的认为摩擦力确定做负功,所以遇到摩擦力做功问题确定留意分析.应用点四:变力做功的求解例4:一个人用50N的恒力F作用在绳子的一端,通过绳子和定滑轮将一个静止的物体由位置A拉到位置B,如图7-2-9所示,求此过程中绳子拉力对物体所做的功(不计滑轮的摩擦力).图7-2-9思路分析:如以物体为争辩对象,明显作用在物体上的力是一个变力,不能直接应用公式求解,但人拉绳子的力所做的功最终用于增加物体的机械能,所以,绳子拉力对物体所\n学习好资料欢迎下载做的功等于人拉绳子的力所做的功,而绳子的受力点P受力为恒力,拉下绳子的长度即为恒力位移的大小,所以可以应用公式求解.学习好资料欢迎下载解析:由W=Flcosα得W=Fl=F(Hsin30H)sin60学习好资料欢迎下载=50(3sin303sin60)=127J.学习好资料欢迎下载答案:127J思维总结:公式W=Flcosα只适用于恒力做功,对于变力做功,目前我们只能用转换争辩对象,分段运算等方法把变力做功转变为恒力做功来求解.教材资料探究【课堂练习】1、在例1中如水平面是粗糙的,其动摩擦因数μ=0.2,其他条件不变,就10s内力F做的功是多少?摩擦力做的功是多少?2、如图7-2-10所示,倾角α=37°的斜面上放一质量为5kg的滑块,在力F的作用下二者一起由静止以加速度2m/s2向左匀加速运动2s,求滑块受到的力所做的总功为多少?(g=10m/s2)图7-2-103、质量为M的长木板放在光滑的水平地面上,如图7-2-11所示,一个质量为m的滑块以某一速度沿木板表面从A端滑到B点,在木板上前进了Lm,而木板前进了sm,如滑块与木板间的动摩擦因数为μ,求:图7-2-11(1)摩擦力对滑块所做的功?(2)摩擦力对木板所做的功?4、如图7-2-12所示,是一个物体受到的力F与位移l的关系图象,由图象求力F对物体所做的功.图7-2-125、在光滑水平面上,物体受如图7-2-13两个沿水平方向,相互垂直的大小分别为F1=3N和F2=4N的恒力,从静止开头运动10m,求:\n学习好资料欢迎下载(1)F1和F2做功的代数和;(2)F1和F2合力所做的功.思维总结:由该题的解答结果可以证明:几个力对一个物体做功的代数和,等于这几个力的合力对这个物体所做的功.【学后反思】;【课后练习】1.以下关于做功的说法中正确选项()A.凡是受力作用的物体,确定有力对物体做功B.凡是发生了位移的物体,确定有力对物体做功C.只要物体受力的同时又有位移发生,就确定有力对物体做功D.只要物体受力,又在力的方向上发生位移,就力确定对物体做功2.以下说法中正确选项()A.力对物体做正功仍是做负功,取决于力和位移的方向关系B.力做功总是在某过程中完成的,所以功是一个过程量C.功是矢量,正、负表示方向D.功是标量,正、负表示外力对物体做功,仍是物体克服外力做功3.用轻绳系着质量为m的小球并使其以加速度a匀加速上升h,这过程中轻绳对小球所做的功为()A.mghB.m(a-g)hC.mahD.m(a+g)h3.大小相等的水平拉力分别作用于原先静止的、质量分别为m1、m2的物体A和B上,使A沿光滑水平面移动了位移s,使B沿粗糙水平面运动了同样的位移,就拉力F对A、B做的功W1和W2相比较()A.W1>W2B.W1<W2C.W1=W2D.无法比较4.争辩力F在以下几种情形下做功的多少:①用水平推力F推质量为m的物体在光滑水平面上前进了s②用水平推力F推质量为2m的物体沿动摩擦因数为μ的水平面前进了s③斜面倾角为θ,用与斜面平行的推力F推一个质量为2m的物体沿光滑斜面对上推动了s以下判定正确选项()A.③做功最多B.②做功最多C.做功相等D.不能确定5.一个恒力F作用在正在粗糙水平面上运动着的物体上,假如物体做减速运动,就\n学习好资料欢迎下载()A.F对物体确定做负功B.F对物体可能做负功C.F对物体确定做正功D.F对物体可能做正功3.关于摩擦力对物体做功,以下说法中正确选项()A.滑动摩擦力总是做负功B.滑动摩擦力可能做负功,也可能做正功C.静摩擦力对物体确定做负功D.静摩擦力对物体总是做正功4.一个力对运动物体做了负功,就说明()A.这个力确定阻碍物体的运动B.这个力与物体运动方向的夹角θ>90°C.这个力与物体运动方向的夹角可能为θ<90°D.这个物体确定做减速运动5.人以20N的水平恒力推着小车在粗糙的水平面上前进了5.0m,人放手后,小车仍前进了2.0m才停下来,就小车在运动过程中,人的推力所做的功为()A.100JB.140JC.60JD.无法确定10.一物体在相互垂直的两个共点力F1、F2作用下运动,运动过程中F1对物体做功3J,F2对物体做功4J,就F1与F2的合力对物体做功A.1JB.5J()C.7JD.无法运算11.如图7-2-14所示,在长为L的细线下挂一质量为m的小球,用水平恒力F拉小球直到细线偏离竖直方向60°角,求该过程中F所做的功和重力所做的功.图7-2-1412.质量为m的物体放在光滑的水平面上,绳经滑轮与水平方向成θ角,用大小为F的力拉物体,如图7-2-15所示,将物体由A点拉至B点,物体前进的距离为s,求外力对物体所做的总功多大?图7-2-1513.如图7-2-16所示,水平的传送带以恒定的速度v=6m/s顺时针运转,两转动轮M、N之间的距离L=10m,如在M轮的正上方,将一质量为m=3kg的物体轻放在传送带上,已知物体与传送带之间的动摩擦因数μ=0.3,在物体由M处传送到N处的过程中,传送带对物体的摩擦力做了多少功?\n学习好资料欢迎下载图7-2-1611.磨杆长为R,在杆端施以与杆垂直且大小不变的力F,如图7-2-17所示,求杆绕轴转动一周过程中力F所做的功.图7-2-17学习好资料欢迎下载【学问链接】0702《功》导学案答案学习好资料欢迎下载1.相同守恒能量能势能动能2.力的方向上力的方向位移W=FlFlcosα力的大小、位移的大小、力与位移夹角的余弦这三者的乘积焦耳J3.=不做功>做正功<做负功物体克服某力做功物体克服某力做功或某力对物体做功4.各个力分别对物体所做功的代数和这几个力的合力对物体所做的功3.〔1〕位置〔3〕动能,动能;4.〔1〕运动〔2〕惯性,惯性;〔3〕势能,势能;【典型例题】【课堂练习】1:1003J(1003-60)J2:40J3:(1)-μmg(L+s)(2)μmgs4:-20J5、思路分析:如图7-2-13,物体由静止将沿F1,F2的合力F方向运动,发生的位移l=10m.F1与l方向的夹角θ1=53°,F2与l方向的夹角θ2=37°,F与l同向,然后由功的公式W=Flcosα进行运算.解析:(1)力F1做的功W1=F1lcosθ1=3×10×cos53°J=18J力F2做的功学习好资料欢迎下载W2=F2lcosθ2=4×10×cos37°J=32JW1与W2的代数和W=W1+W2=18J+32J=50J.(2)F1与F2的合力图7-2-13\n学习好资料欢迎下载学习好资料欢迎下载2F=F1F2=3242N=5N学习好资料欢迎下载2合力F做的功W′=Fl=5×10J=50J.答案:(1)50J(2)50J思维总结:由该题的解答结果可以证明:几个力对一个物体做功的代数和,等于这几个力的合力对这个物体所做的功.【课后练习】1.D2.ABD3.D4.C5.C6.BD7.B8.AB9.A10.C11.解析:拉力和重力都是恒力3F方向的位移sF=Lsin60°=L23F的功WF=F·sF=FL2重力方向的位移sG=L(1-cos60°)=1L2学习好资料欢迎下载重力做的功WG=-mgsG=-1mgL.2学习好资料欢迎下载学习好资料欢迎下载答案:31FL-mgL学习好资料欢迎下载2212.解析:法一:物体受力等效于图所示,由各力的功等于各分力功的代数和得:W=Fs+Fscosθ=Fs(1+cosθ).法二:如以下图:学习好资料欢迎下载l=2scos2W=Flcos2所以W=F·2scos2=Fs(1+cosθ).1=F·2s2cos2学习好资料欢迎下载答案:Fs(1+cosθ)13.解析:物体放在M处的初速度为零,与传送带之间有相对滑动,设物体到达N端之\n学习好资料欢迎下载学习好资料欢迎下载222前速度已达6m/s,就物体在这一加速过程中发生的位移为s1=v=v=6m=6学习好资料欢迎下载2a2g20.310m<L=10m,由此可知假设成立,物体在以后的位移s2=L-s1=4m的过程中不再受摩擦力的作用,整个过程中只有在一开头的6m过程中存在摩擦力作用,所以摩擦力在整个过程中做功W=μmgs1cos0°=0.3×3×10×6J=54J.答案:54J11.解析:磨杆绕轴转动过程中,力的方向不断变化,不能直接用公式W=Flcosα进行运算.这时,必需把整个圆周分成许多小弧段,使每小弧段都可以看作是这段弧的切线,即可以看成是这段的位移.这样,由于F的大小不变,加之与位移的方向相同,因而对于每小段圆弧均可视为恒力做功.杆绕轴转动一周所做功的总和为:W=W1+W2+⋯+Wn=F·Δl1+F·Δl2+⋯+F·Δln由于Δl1+Δl2+⋯+Δln=2πR所以W=F·2πR.答案:F·2πR