- 101.87 KB
- 2022-06-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
分数乘法-、分数乘法(一)、分数乘法的计算法则:1、分数与整数相乘:分子与整数相乘的积做分子,分母不变。(整数和分母约分)2、分数与分数相乘:用分子相乘的积做分子,分母相乘的积做分母。3、为了计算简便,能约分的要先约分,再计算。注意:当带分数进行乘法计算时,要先把带分数化成假分数再进行计算。(二)、规律:(乘法中比较大小吋)一个数(0除外)乘大于1的数,积大于这个数。一个数(0除外)乘小于1的数(0除外),积小于这个数。一个数(0除外)乘1,积等于这个数。(三)、分数混合运算的运算顺序和整数的运算顺序相同。(四)、整数乘法的交换律、结合律和分配律,对于分数乘法也同样适用。乘法交换律乘法结合律乘法分配律aXb=bXa(aXb)Xc=aX(bXc)(a+b)Xc=ac+bcac+bc=(a+b)Xc二、分数乘法的解决问题(已知单位“1”的量(用乘法),求单位“1”的几分之几是多少)1、找单位“1”:在分率句中分率的前面;或"占”、“是”、"比”的后面、分率的前面。2、求一个数的儿倍:一个数X儿倍;求一个数的儿分之儿是多少:一个数X/L几3、写数量关系式技巧:(1)“的”相当于“X”“占”、“是”、“比”相当于“二”(2)分率前是“的”:单位“1”的量X分率二分率对应量(3)分率前是“多或少”的意思:单位“1”的量X(1土分率)二分率对应量三、倒数1、倒数的意义:乘积是1的两个数互为倒数。强调:互为倒数,即倒数是两个数的关系,它们互相依存,倒数不能单独存在。(要说清谁是谁的倒数)。2、求倒数的方法:(1)、求分数的倒数:交换分子分母的位置。(2)、求整数的倒数:把整数看做分母是1的分数,再交换分子分母的位置。(3)、求带分数的倒数:把带分数化为假分数,再求倒数。(4)、求小数的倒数:把小数化为分数,再求倒数。3、1的倒数是1;0没有倒数。因为1XI二1;0乘任何数都得0,(分母不能为0)ba分数方的倒数是厂;丄丄4、对于任意数Q(QH°),它的倒数为万;非零整数Q的倒数为万;5、真分数的倒数大于1;假分数的倒数小于或等于1;带分数的倒数小于1。分数除法一、分数除法1、分数除法的意义:分数除法与整数除法的意义相同,表示已知两个因数的积和其中一个因数,求另一个因数的运算。2、分数除法的计算法则:除以一个不为0的数,等于乘这个数的倒数。3、规律(分数除法比较大小时):(1)、当除数大于1,商小于被除数;(2)、当除数小于1(不等于0),商大于被除数;(3)、当除数等于1,商等于被除数。二、分数除法解决问题(求单位“1”的量(用除法):已知单位“1”的儿分之儿是多少,求单位“1”的量。)1、数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量X分率二分率对应量(2)分率前是“多或少”的意思:单位“1”的量X(1土分率)二分率对应量2、解法:(建议:最好用方程解答)(1)方程:根据数量关系式设未知量为X,用方程解答。\n(2)算术(用除法):分率对应量4■对应分率=单位"1"的量3、求一个数是另一个数的儿分之儿:就一个数F另一个数4、求一个数比另一个数多(少)几分之几:①求多儿分之儿:大数十小数-1②求少几分之几:1・小数一大数或①求多几分之几(大数•小数)一小数②求少几分之几:(大数•小数)一大数三、比和比的应用(一)、比的意义1、比的意义:两个数相除又叫做两个数的比。2、在两个数的比屮,比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的直,叫做比值。3例如15:10=15-10=-(比值通常用分数表示,也可以用小数或整数表示)2前项比号后项比值4、区分比和比值J比:表示两个数的关系,可以写成比的形式,也可以用分数表示。]比值:相当于商,是一个数,可以是整数,分数,也可以是小数。5、根珈分数与除法的关系,两个数的比也可以写成分数形式。6、比和除法、分数的联系:比前项比号“:”后项比值除法被除数除号“4-”除数商分数分子分数线分母分数值7、比和除法、分数的区别:除法是一种运算,分数是一个数,比表示两个数的关系。8、根据比与除法、分数的关系,可以理解比的后项不能为0。体育比赛中出现两队的分是2:0等,这只是一种记分的形式,不表示两个数相除的关系。(二)、比的基本性质1、根据比、除法、分数的关系:「商不变的性质:被除数和除数同时乘或除以相同的数(0除外),商不变。J分数的基本性质:分数的分子和分母同时乘或除以相同的数时(0除外),分数值不变。比的基本性质:比的前项和后项同时乘或除以相同的数(0除外),比值不变。2、最简整数比:比的前项和后项都是整数,并且是互质数,这样的比就是最简整数比。3、根据比的基本性质,可以把比化成最简单的整数比。4、化简比:依据比「①用比的前项和后项同时除以它们的最大公因数。(1)的基本丿②两个分数的比:用前项后项同时乘分母的最小公倍数,再按化简整数比的方法来化简。性质:③两个小数的比:向右移动小数点的位置,先化成整数比再化简。3(2)用求比值的方法。如:15:10=154-10=-=1.52圆一、认识圆1、圆的定义:圆是由曲线围成的一种平而图形。2、圆心:将一张圆形纸片对折两次,折痕相交于圆中心的一点,这一点叫做圆心。一般用字母O表示。它到圆上任意一点的距离都相等.3、半径:连接圆心到圆上任意一点的线段叫做半径。一般用字母r表示。把圆规两脚分开,两脚之间的距离就是圆的半径。4、直径:通过圆心并且两端都在圆上的线段叫做直径。一般用字母d表示。直径是一个圆内最长的线段。5、圆心确定圆的位置,半径确定圆的大小。6、在同圆或等圆内,有无数条半径,有无数条直径。所有的半径都相等,所有的直径都相等。\n!d_7、在同圆或等圆内,直径的长度是半径的2倍,半径的长度是直径的亍。用字母表示为:d=2r或r=28、轴对称图形:如果一个图形沿着一条直线对折,两侧的图形能够完全重合,这个图形是轴对称图形。\n折痕所在的这条直线叫做对称轴。(经过圆心的任意一条直线或直径所在的直线)角、等腰三角形、等腰梯形、扇形、半圆。长方形等边三角形正方形;圆、圆环。9、长方形、正方形和圆都是对称图形,都有对称轴。这些图形都是轴对称图形。10、只有1一条对称轴的图形有:只有2条对称轴的图形是:只有3条対称轴的图形是:只有4条对称轴的图形是:有无数条对称轴的图形是:二、圆的周长1、圆的周长:围成圆的曲线的长度叫做圆的周长。用字母C表示。2、圆周率实验:发现一般规律,就是圆周长与它直径的比值是一个固定数(兀)。3、圆周率:任意一个圆的周长与它的直径的比值是一个固定的数,我们把它叫做圆周率。用字母兀(pai)表示。(1)、一个圆的周长总是它直径的3倍多一些,这个比值是一个固定的数。圆周率n是一个无限不循环小数。在计算时,一般取兀〜3.14。(2)、在判断时,圆周长与它直径的比值是兀倍,而不是3.14倍。(3)、世界上第一个把圆周率算岀来的人是我国的数学家祖冲4、圆的周长公式:Ond|>已知周长求直径:d=C十兀或02兀r(已知周长求半径:r=C4-2兀5、在一个正方形里画一个最大麻郦置狂等于正方形的边长。在一个长方形里画一个最大的圆,圆的直径等于长方形的宽。计算方法:2Hr4-2即Hr计算方法:r+2r6、区分周长的一半和半圆的周长:(1)周长的一半:等于圆的周长十2(2)半圆的周长:等于圆的周长的一半加直径。用字母S表示。三、圆的面积2、一条弧和经过这条弧两端的两条半径所围成的图形叫做扇形。顶点在圆心的角叫做圆心角。圆面积公式的推导:1、圆的面积:圆所占平而的大小叫做圆的而积。3、(1)、把一个圆等分(偶数份)成的扇形份数越多,拼成的图像越接近长方形。(2)、拼出的图形与圆的周长和半径的关系。因为:圆的半径圆的周长的一半长方形面积长方形长方形的宽长方形的长长X宽所以:圆的而积公式:圆的面积二S圆二S圆二圆周长的一半jirXrjir2X圆的半径(R=r+环的宽度.)或4、环形的面积:一个环形,外圆的半径是R,内圆的半径是cS环二jiR2—兀r:环形的面积公式:S坏二兀(R2—r2)o5、一个圆,半径扩大或缩小多少倍,直径和周长也扩大或缩小相同的倍数。而面积扩大或缩小的倍数是这倍数的平方倍。例如:在同一个圆里,半径扩大3倍,那么直径和周长就都扩大3倍,而面积扩大9倍。4.5、7、8、两个圆:半径比二直径比=周长比;而而积比等于这比的平方。例如:两个圆的半径比是2:3,那么这两个圆的直径比和周长比都是2:3,而面积比是4:9任意一个正方形与它内切圆的面积之比都是一个固定值,即:4:n当长方形,正方形,圆的周长相等时,圆面枳最大,正方形居中,长方形面积最小。反之,面枳相同时,长方形的周长最长,正方形居中,圆周长最短。\n百分数一、百分数的意义和写法1、百分数的意义:表示一个数是另一个数的百分之儿。百分数是指的两个数的比,因此也叫百分率或百分比。百分数和分数的主要联系与区别:联系:都可以表示两个量的倍比关系。区别:①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。②、百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。2、百分数的写法:通常不写成分数形式,而在原来分子后面加上“%"来表示。二、百分数和分数、小数的互化(一)百分数与小数的互化:1、小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。2.百分数化成小数:把小数点向左移动两位,同时去掉百分号。(二)百分数的和分数的互化1、百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分数。2、分数化成百分数:①用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数°三、用百分数解决问题(一)一般应用题1、常见的百分率的计算方法:①合格率二合格严品数X100%产品总数④达标率=⑦烘干率=iwSJ10(p/o②发芽率二发严^100%种子总数⑤成活率=^Fxioo%③出勤率=豁如。%⑥出粉率=臨亀加⑧含水率=烘干前的重量烘于后的重鬲0%烘干前的重量一般来讲,出勤率、成活率、合格率、正确率能达到100%,出米率、出油率达不到100%,完成率、增长了百分Z几等可以超过100%。(一般出粉率在70、80%,出油率在30、40%o)2、已知单位“1”的量(用乘法),单位“1”的百分之几是多少的问题:数量关系式和分数乘法解决问题中的关系式相同:(1)分率前是“的”:单位“1”的量X分率二分率对应量(2)分率前是“多或少”的意思:单位“1”的量X(1土分率)二分率对应量3、求单位“1”的量(用除法),。(1)方程:根据数量关系式设未知量为X,用方程解答。(2)算术(用除法):分率对应量一对应分率=单位“1”的量4、求一个数比另一个数多(少)百分之儿的问题:两个数的相差量一单位“1”的量X100%或:求多百分之儿:(大数■小数)一小数求少百分之几:(大数■小数)一大数扇形统计图一、扇形统计图的意义:用整个圆的面积表奈总数,用圆内各个扇形面积表示各部分数量同总数之间的关系。也就是各部分数量占总数的百分比(因此也叫百分比图)。二、常用统计图的优点:1、条形统计图:可以清楚的看岀各种数量的多少。2、折线统计图:不仅可以看出各种数量的多少,还可以清晰看出数量的增减变化情况。3、扇形统计图:能够清楚的反映出各部分数量同总数之I'可的关系。三、扇形的面积大小:在同一个圆中,扇形的大小与这个扇形的圆心角的大小有关,圆心角越大,扇形越大。\n(因此扇形面积占圆面积的百分比,同时也是该扇形圆心角度数占圆周角度数的百分比。)