• 315.08 KB
  • 2022-07-17 发布

《中考课件初中数学总复习资料》专题39 中考函数综合类问题(原卷版)

  • 9页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
专题39中考函数综合类问题1.一次函数与二次函数的综合。2.一次函数与反比例函数的综合。3.二次函数与反比例函数的综合。4.一次函数、二次函数和反比例函数的综合。5.其他情况下的综合。【例题1】(2020•青岛)已知在同一直角坐标系中,二次函数y=ax2+bx和反比例函数y=cx的图象如图所示,则一次函数y=cax﹣b的图象可能是(  )A.B.C.D.【对点练习】(2019内蒙古呼和浩特)二次函数y=ax2与一次函数y=ax+a在同一坐标系中的大致图象可能是(  )\nA.B.C.D.【例题2】(2020•安徽)如图,一次函数y=x+k(k>0)的图象与x轴和y轴分别交于点A和点B.与反比例函数y=kx的图象在第一象限内交于点C,CD⊥x轴,CE⊥y轴.垂足分别为点D,E.当矩形ODCE与△OAB的面积相等时,k的值为  .【对点练习】(2019吉林长春)如图,在平面直角坐标系中,抛物线y=ax2-2ax+(a>0)与y轴交于点A,过点A作x轴的平行线交抛物线于点M,P为抛物线的顶点,若直线OP交直线AM于点B,且M为线段AB的中点,则ɑ的值为【例题3】(2020•菏泽)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象相交于A(1,2),B(n,﹣1)两点.(1)求一次函数和反比例函数的表达式;\n(2)直线AB交x轴于点C,点P是x轴上的点,若△ACP的面积是4,求点P的坐标.【对点练习】(2019广西省贵港市)如图,菱形的边在轴上,点的坐标为,点在反比例函数的图象上,直线经过点,与轴交于点,连接,.(1)求,的值;(2)求的面积.【例题4】(2020贵州黔西南)已知抛物线y=ax2+bx+6(a≠0)交x轴于点A(6,0)和点B(-1,0),交y轴于点C.(1)求抛物线的解析式和顶点坐标;(2)如图(1),点P是抛物线上位于直线AC上方的动点,过点P分别作x轴,y轴的平行线,交直线AC于点D,E,当PD+PE取最大值时,求点P的坐标;(3)如图(2),点M为抛物线对称轴l上一点,点N为抛物线上一点,当直线AC垂直平分△AMN的边MN时,求点N的坐标.\n【对点练习】(2019湖北咸宁)如图,在平面直角坐标系中,直线y=-12x+2与x轴交于点A,与y轴交于点B,抛物线y=-12x2+bx+c经过A,B两点且与x轴的负半轴交于点C.(1)求该抛物线的解析式;(2)若点D为直线AB上方抛物线上的一个动点,当∠ABD=2∠BAC时,求点D的坐标;(3)已知E,F分别是直线AB和抛物线上的动点,当B,O,E,F为顶点的四边形是平行四边形时,直接写出所有符合条件的E点的坐标.一、选择题1.(2020•无锡)反比例函数y=kx与一次函数y=815x+1615的图形有一个交点B(12,m),则k的值为(  )A.1B.2C.23D.43\n2.(2019广东深圳)已知函数y=ax2+bx+c(a≠0)的图象如图所示,则函数y=ax+b与y=的图象为()3.(2019齐齐哈尔)“六一”儿童节前夕,某部队战士到福利院慰问儿童.战士们从营地出发,匀速步行前往文具店选购礼物,停留一段时间后,继续按原速步行到达福利院(营地、文具店、福利院三地依次在同一直线上).到达后因接到紧急任务,立即按原路匀速跑步返回营地(赠送礼物的时间忽略不计),下列图象能大致反映战士们离营地的距离S与时间t之间函数关系的是(  )A.B.C.D.4.(2020•无锡)反比例函数y=kx与一次函数y=815x+1615的图形有一个交点B(12,m),则k的值为(  )A.1B.2C.23D.43二、填空题5.(2020•北京)在平面直角坐标系xOy中,直线y=x与双曲线y=mx交于A,B两点.若点A,B的纵坐标分别为y1,y2,则y1+y2的值为  .6.(2020•菏泽)从﹣1,2,﹣3,4这四个数中任取两个不同的数分别作为a,b的值,得到反比例函数y=abx,则这些反比例函数中,其图象在二、四象限的概率是  .7.(2020•自贡)如图,直线y=-3x+b与y轴交于点A,与双曲线y=kx在第三象限交于B、C两点,且AB•AC=16.下列等边三角形△OD1E1,△E1D2E2,△E2D3E3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D\n1,D2,D3,…在该双曲线第一象限的分支上,则k=  ,前25个等边三角形的周长之和为  .8.(2020•甘孜州)如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数y=2x的图象交于A,B两点,若点P是第一象限内反比例函数图象上一点,且△ABP的面积是△AOB的面积的2倍,则点P的横坐标为  .三、解答题9.(2020•成都)在平面直角坐标系xOy中,反比例函数y=mx(x>0)的图象经过点A(3,4),过点A的直线y=kx+b与x轴、y轴分别交于B,C两点.(1)求反比例函数的表达式;(2)若△AOB的面积为△BOC的面积的2倍,求此直线的函数表达式.10.(2020•广元)如图,一次函数y=kx+b的图象与反比例函数y=mx的图象交于A(3,4),B(n,﹣1).\n(1)求反比例函数和一次函数的解析式;(2)在x轴上存在一点C,使△AOC为等腰三角形,求此时点C的坐标;(3)根据图象直接写出使一次函数的值大于反比例函数的值的x的取值范围.11.(2019山东东营)如图,在平面直角坐标系中,直线y=mx与双曲线y=相交于A(-2,a)、B两点,BC⊥x轴,垂足为C,△AOC的面积是2.(1)求m、n的值;(2)求直线AC的解析式.12.(2020•安徽)在平面直角坐标系中,已知点A(1,2),B(2,3),C(2,1),直线y=x+m经过点A,抛物线y=ax2+bx+1恰好经过A,B,C三点中的两点.(1)判断点B是否在直线y=x+m上,并说明理由;(2)求a,b的值;(3)平移抛物线y=ax2+bx+1,使其顶点仍在直线y=x+m上,求平移后所得抛物线与y轴交点纵坐标的最大值.\n13.(2020•齐齐哈尔)综合与探究在平面直角坐标系中,抛物线y=12x2+bx+c经过点A(﹣4,0),点M为抛物线的顶点,点B在y轴上,且OA=OB,直线AB与抛物线在第一象限交于点C(2,6),如图①.(1)求抛物线的解析式;(2)直线AB的函数解析式为  ,点M的坐标为  ,cos∠ABO=  ;连接OC,若过点O的直线交线段AC于点P,将△AOC的面积分成1:2的两部分,则点P的坐标为  ;(3)在y轴上找一点Q,使得△AMQ的周长最小.具体作法如图②,作点A关于y轴的对称点A',连接MA'交y轴于点Q,连接AM、AQ,此时△AMQ的周长最小.请求出点Q的坐标;(4)在坐标平面内是否存在点N,使以点A、O、C、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.14.(2020•湖州)如图,已知在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C.过点C的直线CA与抛物线交于另一点A(点A在对称轴左侧),点B在AC的延长线上,连结OA,OB,DA和DB.(1)如图1,当AC∥x轴时,①已知点A的坐标是(﹣2,1),求抛物线的解析式;②若四边形AOBD是平行四边形,求证:b2=4c.(2)如图2,若b=﹣2,BCAC=35,是否存在这样的点A,使四边形AOBD是平行四边形?若存在,求出点A的坐标;若不存在,请说明理由.15.(2020•南充)已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.\n(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=53,求点K的坐标.

相关文档