- 653.50 KB
- 2022-07-20 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
中考专题——构建数学模型“能够运用所学知识解决简单的实际问题”是九年义务教育数学教学大纲规定的初中数学教学目的之一。能够解决实际问题是学习数学知识、形成技能和发展能力的结果,也是对获得知识、技能和能力的检验。构建数学模型解决实际问题基本程序如下:一、解题步骤如下:1、阅读、审题:要做到简缩问题,删掉次要语句,深入理解关键字句;为便于数据处理,最好运用表格(或图形)处理数据,便于寻找数量关系。2、建模:将问题简单化、符号化,尽量借鉴标准形式,建立数学关系式。3、合理求解纯数学问题4、解释并回答实际问题中学阶段主要求解下面几类应用题,本文以2004年全国各地中考试题为例供同学们学习:二、初中阶段所涉及到的建模的几种应用1.数与式模型例1、(2015•山东莱芜,第10题3分)甲乙两人同时从A地出发到B地,如果甲的速度v保持不变,而乙先用v的速度到达中点,再用2v的速度到达B地,则下列结论中正确的是( ) A.甲乙同时到达B地B.甲先到达B地 C.乙先到达B地D.谁先到达B地与速度v有关考点:列代数式(分式)..分析:设从A地到B地的距离为2s,根据时间=路程÷速度可以求出甲、乙两人同时从A地到B地所用时间,然后比较大小即可判定选择项.\n解答:解:设从A地到B地的距离为2s,而甲的速度v保持不变,∴甲所用时间为,又∵乙先用v的速度到达中点,再用2v的速度到达B地,∴乙所用时间为,∴甲先到达B地.故选:B.点评:此题主要考查了一元一次方程在实际问题中的应用,解题时首先正确理解题意,根据题意设未知数,然后利用已知条件和速度、路程、时间之间的关系即可解决问题.2、方程模型例2、(2015•云南,第17题7分)为有效开展阳光体育活动,云洱中学利用课外活动时间进行班级篮球比赛,每场比赛都要决出胜负,每队胜一场得2分,负一场得1分.已知九年级一班在8场比赛中得到13分,问九年级一班胜、负场数分别是多少?考点:一元一次方程的应用..分析:设胜了x场,那么负了(8﹣x)场,根据得分为13分可列方程求解.解答:解:设胜了x场,那么负了(8﹣x)场,根据题意得:2x+1•(8﹣x)=13,x=5,13﹣5=8.答:九年级一班胜、负场数分别是5和8.点评:本题考查了一元一次方程的应用,还考查了学生的理解题意能力,关键设出胜的场数,以总分数做为等量关系列方程求解.例3、(2015•怀化,第18题8分)小明从今年1月初起刻苦练习跳远,每个月的跳远成绩都比上一个月有所增加,而且增加的距离相同.2月份,5月份他的跳远成绩分别为4.1m,4.7m.请你算出小明1月份的跳远成绩以及每个月增加的距离.考点:一元一次方程的应用.\n分析:设小明1月份的跳远成绩为xm,则5月份﹣2月份=3(2月份﹣1月份),据此列出方程并解答.解答:解:设小明1月份的跳远成绩为xm,则4.7﹣4.1=3(4.1﹣x),解得x=3.9.则每个月的增加距离是4.1﹣3.9=0.2(m).答:小明1月份的跳远成绩是3.9m,每个月增加的距离是0.2m.点评:本题考查了一元一次方程的应用.解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.3、不等式模型例4、(2015•本溪,第21题12分)暑期临近,本溪某旅行社准备组织“亲子一家游”活动,去我省沿海城市旅游,报名的人数共有69人,其中成人的人数比儿童人数的2倍少3人.(1)旅游团中成人和儿童各有多少人?(2)旅行社为了吸引游客,打算给游客准备一件T恤衫,成人T恤衫每购买10件赠送1件儿童T恤衫(不足10件不赠送),儿童T恤衫每件15元,旅行社购买服装的费用不超过1200元,请问每件成人T恤衫的价格最高是多少元?考点:一元一次不等式的应用;一元一次方程的应用.分析:(1)设旅游团中儿童有x人,则成人有(2x﹣3)人,根据报名的人数共有69人,列方程求解;(2)根据题意可得能赠送4件儿童T恤衫,设每件成人T恤衫的价格是m元,根据旅行社购买服装的费用不超过1200元,列不等式求解.解答:解:(1)设旅游团中儿童有x人,则成人有(2x﹣3)人,根据题意得x+(2x﹣3)=69,解得:x=24,则2x﹣3=2×24﹣3=45.答:旅游团中成人有45人,儿童有24人;(2)∵45÷10=4.5,∴可赠送4件儿童T恤衫,\n设每件成人T恤衫的价格是m元,根据题意可得45x+15(24﹣4)≤1200,解得:x≤20.答:每件成人T恤衫的价格最高是20元.点评:本题考查了一元一次不等式和一元一次方程的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程和不等式求解.例5、(2015•甘肃庆阳,第26题,10分)某体育用品专卖店销售7个篮球和9个排球的总利润为355元,销售10个篮球和20个排球的总利润为650元.(1)求每个篮球和每个排球的销售利润;(2)已知每个篮球的进价为200元,每个排球的进价为160元,若该专卖店计划用不超过17400元购进篮球和排球共100个,且要求篮球数量不少于排球数量的一半,请你为专卖店设计符合要求的进货方案.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得到方程组;即可解得结果;(2)设购进篮球m个,排球(100﹣m)个,根据题意得不等式组即可得到结果.解答:解:(1)设每个篮球和每个排球的销售利润分别为x元,y元,根据题意得:,解得:,答:每个篮球和每个排球的销售利润分别为25元,20元;(2)设购进篮球m个,排球(100﹣m)个,根据题意得:,解得:≤m≤35,∴m=34或m=35,∴购进篮球34个排球66个,或购进篮球35个排球65个两种购买方案.\n点评:本题考查了一元一次不等式的应用,二元一次方程组的应用,找准数量关系是解题的关键. 4、函数模型例6、(2015•通辽,第24题8分)光明文具厂工人的工作时间:每月26天,每天8小时.待遇:按件计酬,多劳多得,每月另加福利工资920元,按月结算.该厂生产A,B两种型号零件,工人每生产一件A种型号零件,可得报酬0.85元,每生产一件B种型号零件,可得报酬1.5元,下表记录的是工人小王的工作情况:生产A种型号零件/件生产B种型号零件/件总时间/分227064170根据上表提供的信息,请回答如下问题:(1)小王每生产一件A种型号零件、每生产一件B种型号零件,分别需要多少分钟?(2)设小王某月生产A种型号零件x件,该月工资为y元,求y与x的函数关系式;(3)如果生产两种型号零件的数目限制,那么小王该月的工资数目最多为多少?考点:一次函数的应用.专题:应用题.分析:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟,根据表格中的数据,列方程组求a、b的值;(2)根据:月工资y=生产一件A种产品报酬×x+生产一件B种产品报酬×+福利工资920元,列出函数关系式;(3)利用(2)得到的函数关系式,根据一次函数的增减性求解.解答:解:(1)设小王生产一个A种产品用a分钟,生产一个B种产品用b分钟;根据题意得,解得,即小李生产一个A种产品用15分钟,生产一个B种产品用20分钟.\n(2)y=0.85x+×1.5+920,即y=﹣0.275x+1856.(3)由解析式y=﹣0.275x+1856可知:x越小,y值越大,并且生产A,B两种产品的数目又没有限制,所以,当x=0时,y=1856.即小王该月全部时间用来生产B种产品,最高工资为1856元.点评:本题考查了一次函数的运用.关键是根据题意列出函数关系式,利用一次函数的增减性解答题目的问题.例7、(2015•山东莱芜,第22题10分)今年我市某公司分两次采购了一批大蒜,第一次花费40万元,第二次花费60万元.已知第一次采购时每吨大蒜的价格比去年的平均价格上涨了500元,第二次采购时每吨大蒜的价格比去年的平均价格下降了500元,第二次的采购数量是第一次采购数量的两倍.(1)试问去年每吨大蒜的平均价格是多少元?(2)该公司可将大蒜加工成蒜粉或蒜片,若单独加工成蒜粉,每天可加工8吨大蒜,每吨大蒜获利1000元;若单独加工成蒜片,每天可加工12吨大蒜,每吨大蒜获利600元.由于出口需要,所有采购的大蒜必需在30天内加工完毕,且加工蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,为获得最大利润,应将多少吨大蒜加工成蒜粉?最大利润为多少?考点:一元一次不等式组的应用;分式方程的应用..分析:(1)设去年每吨大蒜的平均价格是x元,则第一次采购的平均价格为(x+500)元,第二次采购的平均价格为(x﹣500)元,根据第二次的采购数量是第一次采购数量的两倍,据此列方程求解;(2)先求出今年所采购的大蒜数,根据采购的大蒜必需在30天内加工完毕,蒜粉的大蒜数量不少于加工蒜片的大蒜数量的一半,据此列不等式组求解,然后求出最大利润.解答:解:(1)设去年每吨大蒜的平均价格是x元,由题意得,×2=,解得:x=3500,经检验:x=3500是原分式方程的解,且符合题意,答:去年每吨大蒜的平均价格是3500元;\n(2)由(1)得,今年的大蒜数为:×3=300(吨),设应将m吨大蒜加工成蒜粉,则应将(300﹣m)吨加工成蒜片,由题意得,,解得:100≤m≤120,总利润为:1000m+600(300﹣m)=400m+180000,[当m=120时,利润最大,为228000元.答:应将120吨大蒜加工成蒜粉,最大利润为228000元.点评:本题考查了分式方程和一元一次不等式耳朵应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程求解.5、几何模型例8、(2015•聊城,第10题3分)湖南路大桥于今年5月1日竣工,为徒骇河景区增添了一道亮丽的风景线.某校数学兴趣小组用测量仪器测量该大桥的桥塔高度,在距桥塔AB底部50米的C处,测得桥塔顶部A的仰角为41.5°(如图).已知测量仪器CD的高度为1米,则桥塔AB的高度约为( )A.34米.B.38米C.45米D.50米考点:解直角三角形的应用-仰角俯角问题.分析:Rt△ADE中利用三角函数即可求得AE的长,则AB的长度即可求解.解答:过D作DE⊥AB于E,∴DE=BC=50米,在Rt△ADE中,AE=DE•tan41,5°≈50×0.88=44(米),∵CD=1米,∴BE=1米,\n∴AB=AE+BE=44+1=45(米),∴桥塔AB的高度为45米.点评:本题考查仰角的定义,注意能借助仰角构造直角三角形并解直角三角形是解此题的关键,注意数形结合思想的应用.例9、(2015年浙江省义乌市中考,20,8分)如图,从地面上的点A看一山坡上的电线杆PQ,测得杆顶端点P的仰角是45°,向前走6m到达B点,测得杆顶端点P和杆底端点Q的仰角分别是60°和30°。(1)求∠BPQ的度数;(2)求该电线杆PQ的高度(结果精确到1m)。备用数据:,考点:解直角三角形的应用-仰角俯角问题..分析:(1)延长PQ交直线AB于点E,根据直角三角形两锐角互余求得即可;92)设PE=x米,在直角△APE和直角△BPE中,根据三角函数利用x表示出AE和BE,根据AB=AE﹣BE即可列出方程求得x的值,再在直角△BQE中利用三角函数求得QE的长,则PQ的长度即可求解.解答:解:延长PQ交直线AB于点E,(1)∠BPQ=90°﹣60°=30°;(2)设PE=x米.在直角△APE中,∠A=45°,则AE=PE=x米;∵∠PBE=60°∴∠BPE=30°在直角△BPE中,BE=PE=x米,\n∵AB=AE﹣BE=6米,则x﹣x=6,解得:x=9+3.则BE=(3+3)米.在直角△BEQ中,QE=BE=(3+3)=(3+)米.∴PQ=PE﹣QE=9+3﹣(3+)=6+2≈9(米).答:电线杆PQ的高度约9米.点评:本题考查了仰角的定义,以及三角函数,正确求得PE的长度是关键.6、三角模型例10、(2015•山东莱芜,第20题9分)为保护渔民的生命财产安全,我国政府在南海海域新建了一批观测点和避风港.某日在观测点A处发现在其北偏西36.9°的C处有一艘渔船正在作业,同时检测到在渔船的正西B处有一股强台风正以每小时40海里的速度向正东方向移动,于是马上通知渔船到位于其正东方向的避风港D处进行躲避.已知避风港D在观测点A的正北方向,台风中心B在观测点A的北偏西67.5°的方向,渔船C与观测点A相距350海里,台风中心的影响半径为200海里,渔船的速度为每小时18海里,问渔船能否顺利躲避本次台风的影响?(sin36.9°≈0.6,tan36.9≈0.75,sin67.5≈0.92,tan67.5≈2.4)\n考点:解直角三角形的应用-方向角问题..分析:先解Rt△ADC,求出CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里,那么渔船到的避风港D处所用时间:210÷18=11小时.再解Rt△ADB,求出BD=AD•tan∠BAD≈280×2.4=672海里,那么BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据追及问题的等量关系列出方程(40﹣18)x=462﹣200,解方程求出x=11,由于11<11,所以渔船能顺利躲避本次台风的影响.解答:解:由题意可知∠BAD=67.5°,∠CAD=36.9°,AC=350海里.在Rt△ADC中,∵∠ADC=90°,∠DAC=36.9°,AC=350海里,∴CD=AC•sin∠DAC≈350×0.6=210海里,AD==280海里.∴渔船到的避风港D处所用时间:210÷18=11小时.在Rt△ADB中,∵∠ADB=90°,∠BAD=67.5°,∴BD=AD•tan∠BAD≈280×2.4=672海里,∴BC=BD﹣CD≈672﹣210=462海里.设强台风移动到渔船C后面200海里时所需时间为x小时,根据题意得(40﹣18)x=462﹣200,解得x=11,∵11<11,∴渔船能顺利躲避本次台风的影响.点评:本题考查了解直角三角形的应用﹣方向角问题,难度中等,求出强台风移动到渔船C后面200海里时所需时间是解题的关键.\n7、统计模型例11(2015•山东德州,第19题8分)2014年1月,国家发改委出台指导意见,要求2015年底前,所有城市原则上全面实行居民阶梯水价制度,小明为了解市政府调整水价方案的社会反响,随机访问了自己居住小区的部分居民,就“每月每户的用水量”和“调价对用水行为改变”两个问题进行调查,并把调查结果整理成下面的图1,图2.小明发现每月每户的用水量在5m3﹣35m3之间,有8户居民对用水价格调价涨幅抱无所谓,不会考虑用水方式的改变,根据小明控制的图表和发现的信息,完成下列问题:(1)n= 210 ,小明调查了 96 户居民,并补全图1;(2)每月每户用水量的中位数和众数分别落在什么范围?(3)如果小明所在小区有1800户居民,请你估计“视调价涨幅采取相应的用水方式改变”的居民户数有多少.考点:条形统计图;用样本估计总体..分析:(1)首先根据圆周角等于360°,求出的值是多少即可;然后用“视水价格调价涨幅抱无所谓态度”的居民的户数除以它占被调查的居民户数的分率,求出小明调查了多少户居民;最后求出每月每户的用水量在15m3﹣20m3之间的居民的户数,补全图1即可.(2)根据中位数和众数的含义分别进行解答即可.(3)根据分数乘法的意义,用小明所在小区居民的户数乘以“视调价涨幅采取相应的用水方式改变”的居民户数占被调查的居民户数的分率,求出“视调价涨幅采取相应的用水方式改变”的居民户数有多少即可.解答:解:(1)n=360﹣30﹣120=210,∵8÷==96(户)\n∴小明调查了96户居民.每月每户的用水量在15m3﹣20m3之间的居民的户数是:96﹣(15+22+18+16+5)=96﹣76=20(户).(2)96÷2=48(户),15+12=37(户),15+22+20=57(户),∵每月每户的用水量在5m3﹣15m3之间的有37户,每月每户的用水量在5m3﹣20m3之间的有57户,∴把每月每户用水量这组数据从小到大排列后,第48个、第49个数在15﹣20之间,∴第48个、第49个数的平均数也在15﹣20之间,∴每月每户用水量的中位数落在15﹣20之间;∵在这组数据中,10﹣15之间的数出现的次数最多,出现了22次,∴每月每户用水量的众数落在10﹣15之间.(3)∵1800×=1050(户),∴“视调价涨幅采取相应的用水方式改变”的居民户数有1050户.故答案为:210、96.点评:(1)此题主要考查了对条形统计图的认识和了解,要善于从条形统计图中获取信息,并能利用获取的信息解决实际问题.(2)此题还考查了用样本估计总体,要熟练掌握,解答此题的关键是要明确众数、中位数、平均数、标准差与方差等的含义以及求法.\n例12、(2015•山东莱芜,第19题8分)为了解今年初四学生的数学学习情况,某校在第一轮模拟测试后,对初四全体同学的数学成绩作了统计分析,绘制如下图表:请结合图表所给出的信息解答系列问题:成绩频数频率优秀45b良好a0.3合格1050.35不合格60c(1)该校初四学生共有多少人?(2)求表中a,b,c的值,并补全条形统计图.(3)初四(一)班数学老师准备从成绩优秀的甲、乙、丙、丁四名同学中任意抽取两名同学做学习经验介绍,求恰好选中甲、乙两位同学的概率.考点:列表法与树状图法;频数(率)分布表;条形统计图.分析:(1)利用合格的人数除以该组频率进而得出该校初四学生总数;(2)利用(1)中所求,结合频数÷总数=频率,进而求出答案(3)根据题意画出树状图,然后求得全部情况的总数与符合条件的情况数目;二者的比值就是其发生的概率.解答:解:(1)由题意可得:该校初四学生共有:105÷0.35=300(人),答:该校初四学生共有300人;(2)由(1)得:a=300×0.3=90(人),b==0.15,\nc==0.2;如图所示;(3)画树形图得:∴一共有12种情况,抽取到甲和乙的有2种,∴P(抽到甲和乙)==.点评:此题主要考查了树状图法求概率以及条形统计图的应用,根据题意利用树状图得出所有情况是解题关键.8、综合性模型 例13、(2015年重庆B第26题12分)如图,抛物线与x轴交与A,B两点(点A在点B的左侧),与y轴交于点C.点D和点C关于抛物线的对称轴对称,直线AD与y轴相交于点E.(1)求直线AD的解析式;(2)如图1,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,作FH平行于x轴交直线AD于点H,求△FGH的周长的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是AM为边的矩形,若点T和点Q关于AM所在直线对称,求点T的坐标.\n【答案】y=x+1;;(0,-)或(0,).【解析】试题分析:根据题意得出点A和点D的坐标,然后利用待定系数法求出函数解析式;过点F作x轴的垂线,交直线AD于点M,得出△FGH≌△FGM,即然后设点F的坐标,求出FM的长度,从而根据周长=FM+2×得出与m的函数关系式,将函数化成顶点式,求出最大值;本题分AP为对角线和AQ为对角线两种情况分别进行计算,若AP为对角线,画出图形,由△PMS∽△MAR得出点P的坐标,根据图形的平移得出点Q的坐标,从而得出点Q关于直线AM的对称点T的坐标,若AQ为对角线,根据题意画出图形,得到点P的坐标,根据平移得到点Q的坐标,然后求出点Q关于直线AM的对称点T的坐标.试题解析:(1)、AD:y=x+1(2)、过点F作x轴的垂线,交直线AD于点M,易证△FGH≌△FGM故设则FM=则C=故最大周长为②若AQ为对角线如图,同理可知P(0,-)由点的平移可知Q(2,)故Q点关于直线AM的对称点T为(0,)\n考点:二次函数的综合应用、三角形相似.三、拓展应用:1.(2015•铜仁市)(第12题)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= 0 .2.(2015•东营,第23题8分)2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)3.(2015•青岛,第20题8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?\n(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?4.(2015年陕西省,19,5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 良好 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.5.(2015•四川凉山州第11题4分)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是( )\n A.10B.11C.12D.136.(2015•铜仁市)(第23题)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆? 7.(2015•营口,第24题12分)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.\n(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].8.(2015•四川凉山州第23题8分)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.9.(2015•昆明第20题,6分)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15cm,CD=20cm,AB和CD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)\n10.(2015•济南,第15题3分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( ) A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣11.(2015•四川成都,第28题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.\n四、拓展应用参考答案:1.(2015•铜仁市)(第12题)定义一种新运算:x*y=,如2*1==2,则(4*2)*(﹣1)= 0 .考点:有理数的混合运算.专题:新定义.分析:先根据新定义计算出4*2=2,然后再根据新定义计算2*(﹣1)即可.解答:4*2==2,2*(﹣1)==0.故(4*2)*(﹣1)=0.故答案为:0.点评:本题考查了有理数混合运算:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.2.(2015•东营,第23题8分)2013年,东营市某楼盘以每平方米6500元的均价对外销售,因为楼盘滞销,房地产开发商为了加快资金周转,决定进行降价促销,经过连续两年下调后,2015年的均价为每平方米5265元.(1)求平均每年下调的百分率;\n(2)假设2016年的均价仍然下调相同的百分率,张强准备购买一套100平方米的住房,他持有现金20万元,可以在银行贷款30万元,张强的愿望能否实现?(房价每平方米按照均价计算)考点:一元二次方程的应用.专题:增长率问题.分析:(1)设平均每年下调的百分率为x,根据题意列出方程,求出方程的解即可得到结果;(2)如果下调的百分率相同,求出2016年的房价,进而确定出100平方米的总房款,即可做出判断.解答:解:(1)设平均每年下调的百分率为x,根据题意得:6500(1﹣x)2=5265,解得:x1=0.1=10%,x2=1.9(舍去),则平均每年下调的百分率为10%;(2)如果下调的百分率相同,2016年的房价为5265×(1﹣10%)=4738.5(元/米2),则100平方米的住房总房款为100×4738.5=473850=47.385(万元),∵20+30>47.385,∴张强的愿望可以实现.点评:此题考查了一元二次方程的应用,找出题中的等量关系是解本题的关键.3.(2015•青岛,第20题8分)某厂制作甲、乙两种环保包装盒,已知同样用6m材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制成一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少米材料?(2)如果制作甲、乙两种包装盒共3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需要材料的总长度l(m)与甲盒数量n(个)之间的函数关系式,并求出最少需要多少米材料?考点:一次函数的应用;分式方程的应用;一元一次不等式的应用.分析:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,根据“同样用6m材料制成甲盒的个数比制成乙盒的个数少2个”,列出方程,即可解答;\n(2)根据所需要材料的总长度l=甲盒材料的总长度+乙盒材料的总长度,列出函数关系式;再根据“甲盒的数量不少于乙盒数量的2倍”求出n的取值范围,根据一次函数的性质,即可解答.解答:(1)设制作每个乙盒用x米材料,则制作甲盒用(1+20%)x米材料,,解得:x=0.5,经检验x=0.5是原方程的解,∴(1+20%)x=0.6(米),答:制作每个甲盒用0.6米材料;制作每个乙盒用0.5米材料.(2)根据题意得:l=0.6n+0.5(3000﹣n)=0.1n+1500,∵甲盒的数量不少于乙盒数量的2倍,∴n≥2(3000﹣n)解得:n≥2000,∴2000≤n<3000,∵k=0.1>0,∴l随n增大而增大,∴当n=2000时,l最小1700米.点评:本题考查了一次函数的应用,解决本题的关键是利用一次函数的性质解决实际问题.4.(2015年陕西省,19,5分)某校为了了解本校九年级女生体育测试项目“仰卧起坐”的训练情况,让体育老师随机抽查了该年级若干名女生,并严格地对她们进行了1分钟“仰卧起坐”测试,同时统计了每个人做的个数(假设这个个数为x),现在我们将这些同学的测试结果分为四个等级:优秀(x≥44)、良好(36≤x≤43)、及格(25≤x≤35)和不及格(x≤24),并将统计结果绘制成如下两幅不完整的统计图.根据以上信息,解答下列问题:\n(1)补全上面的条形统计图和扇形统计图;(2)被测试女生1分钟“仰卧起坐”个数的中位数落在 良好 等级;(3)若该年级有650名女生,请你估计该年级女生中1分钟“仰卧起坐”个数达到优秀的人数.考点:条形统计图;用样本估计总体;扇形统计图分析:(1)根据各个等级的百分比得出答案即可;(2)根据中位数的定义知道中位数是第25和26个数的平均数,由此即可得出答案;(3)首先根据扇形图得出优秀人数占的百分比,条形统计图可以求出平均数的最小值,然后即可求出答案.解答:(1);(2)∵13+20+12+5=50,50÷2=25,25+1=26,∴中位数落在良好等级,故答案为:良好;(3)650×26%=169(人),即该年级女生中1分钟“仰卧起坐”个数达到优秀的人数是169.点评:本题难度中等,主要考查统计图表的识别;解本题要懂得频率分布直分图的意义.同时考查了平均数和中位数的定义.5.(2015•四川凉山州第11题4分)以正方形ABCD两条对角线的交点O为坐标原点,建立如图所示的平面直角坐标系,双曲线y=经过点D,则正方形ABCD的面积是( )\n A.10B.11C.12D.13考点:反比例函数系数k的几何意义..分析:根据反比例函数系数k的几何意义,可得第一象限的小正方形的面积,再乘以4即可求解.解答:解:∵双曲线y=经过点D,∴第一象限的小正方形的面积是3,∴正方形ABCD的面积是3×4=12.故选:C.点评:本题考查反比例函数系数k的几何意义,过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于|k|.本知识点是中考的重要考点,同学们应高度关注.6.(2015•铜仁市)(第23题)2015年5月,某县突降暴雨,造成山体滑坡,挢梁垮塌,房屋大面积受损,该省民政厅急需将一批帐篷送往灾区.现有甲、乙两种货车,己知甲种货车比乙种货车每辆车多装20件帐篷,且甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等.(1)求甲、乙两种货车每辆车可装多少件帐蓬?(2)如果这批帐篷有1490件,用甲、乙两种汽车共16辆来装运,甲种车辆刚好装满,乙种车辆最后一辆只装了50件,其它装满,求甲、乙两种汽车各有多少辆?考点:分式方程的应用;二元一次方程组的应用.分析:(1)可设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,根据等量关系:①甲种货车比乙种货车每辆车多装20件帐篷;②甲种货车装运1000件帐篷所用车辆与乙种货车装运800件帐蓬所用车辆相等;列出方程组求解即可;(2)可设甲种汽车有z辆,乙种汽车有(16﹣z)辆,根据等量关系:这批帐篷有1490件,列出方程求解即可.解答:(1)设甲种货车每辆车可装x件帐蓬,乙种货车每辆车可装y件帐蓬,依题意有\n,解得,经检验,是原方程组的解.故甲种货车每辆车可装100件帐蓬,乙种货车每辆车可装80件帐蓬;(2)设甲种汽车有z辆,乙种汽车有(16﹣z)辆,依题意有100z+80(16﹣z﹣1)+50=1490,解得z=6,16﹣z=16﹣6=10.故甲种汽车有6辆,乙种汽车有10辆.点评:考查了分式方程的应用和二元一次方程组的应用,利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键. 7.(2015•营口,第24题12分)某粮油超市平时每天都将一定数量的某些品种的粮食进行包装以便出售,已知每天包装大黄米的质量是包装江米质量的倍,且每天包装大黄米和江米的质量之和为45千克.(1)求平均每天包装大黄米和江米的质量各是多少千克?(2)为迎接今年6月20日的“端午节”,该超市决定在前20天增加每天包装大黄米和江米的质量,二者的包装质量与天数的变化情况如图所示,节日后又恢复到原来每天的包装质量.分别求出在这20天内每天包装大黄米和江米的质量随天数变化的函数关系式,并写出自变量的取值范围.(3)假设该超市每天都会将当天包装后的大黄米和江米全部售出,已知大黄米成本价为每千克7.9元,江米成本每千克9.5元,二者包装费用平均每千克均为0.5元,大黄米售价为每千克10元,江米售价为每千克12元,那么在这20天中有哪几天销售大黄米和江米的利润之和大于120元?[总利润=售价额﹣成本﹣包装费用].\n考点:一次函数的应用.分析:(1)设平均每天包装大黄米和江米的质量分别为a千克和b千克,然后列方程组求解即可;(2)设出函数的解析式,利用待定系数法求解即可;(3)根据销售大黄米和江米的利润之和大于120元列不等式求解即可.解答:解:(1)设平均每天包装大黄米和江米的质量分别为a千克和b千克,则,解得;答:平均每天包装大黄米和江米的质量分别为25千克和20千克.(2)观察图象,可设平均每天包装大黄米的质量与天数的关系式为y=k1x+b1,平均每天包装江米的质量与天数的关系式为y=k2x+b2.①当0≤x≤15时,由y=k1x+b1的图象过点(0,25),(15,40).则可列方程组为,解得,∴y1=x+25;由y=k2x+b2的图象过点(0,20),(15,38).则可列方程组为,解得,\n∴;②当15<x≤20时,由y=k1x+b1的图象过点(15,40),(20,25).则可列方程组为,解得,∴y1=﹣3x+85;由y=k2x+b2的图象过点(15,38),(20,20).则可列方程组为,解得,∴y2=,∴,.(3)设第x天销售的总利润为W元,①当0≤x≤15时,W=(10﹣7.9﹣0.5)y1+(12﹣9.5﹣0.5)y2=1.6y1+2y2=1.6(x+25)+2(1.2x+20)=4x+80.由题意4x+80>120,∴x>10,∴x的取值范围为10<x≤15,由题意知x=11,12,13,14,15;②当15<x≤20时,W=(10﹣7.9﹣0.5)y1+(12﹣9.5﹣0.5)y2=1.6y1+2y2=1.6(﹣3x+85)+2()=﹣12x+30.由题意得:﹣12x+320>120,∴x<,∴x的取值范围为15.由题意知x=16.答:由①、②可知在第11,12,13,14,15,16天中销售大黄米和江米的总利润大于120元.\n点评:本题主要考查的是一次函数、二元一次方程组、一元一次不等式的应用,根据图象求得函数的解析式是解题的关键.8.(2015•四川凉山州第23题8分)在甲、乙两个不透明的布袋,甲袋中装有3个完全相同的小球,分别标有数字0,1,2,;乙袋中装有3个完全相同的小球,分别标有数字﹣1,﹣2,0;现从甲袋中随机抽取一个小球,记录标有的数字为x,再从乙袋中随机抽取一个小球,记录标有的数字为y,确定点M坐标为(x,y).(1)用树状图或列表法列举点M所有可能的坐标;(2)求点M(x,y)在函数y=﹣x+1的图象上的概率;(3)在平面直角坐标系xOy中,⊙O的半径是2,求过点M(x,y)能作⊙O的切线的概率.考点:列表法与树状图法;一次函数图象上点的坐标特征;切线的性质..专题:计算题.分析:(1)用树状图法展示所有9种等可能的结果数;(2)根据一次函数图象上点的坐标特征,从9个点中找出满足条件的点,然后根据概率公式计算;(3)利用点与圆的位置关系找出圆上的点和圆外的点,由于过这些点可作⊙O的切线,则可计算出过点M(x,y)能作⊙O的切线的概率.解答:解:(1)画树状图:共有9种等可能的结果数,它们是:(0,﹣1),(0,﹣2),(0,0),(1,﹣1),(1,﹣2),(1,0),(2,﹣1),(2,﹣2),(2,0);(2)在直线y=﹣x+1的图象上的点有:(1,0),(2,﹣1),所以点M(x,y)在函数y=﹣x+1的图象上的概率=;[中国#@*教~育出版&网]\n(3)在⊙O上的点有(0,﹣2),(2,0),在⊙O外的点有(1,﹣2),(2,﹣1),(2,﹣2),所以过点M(x,y)能作⊙O的切线的点有5个,所以过点M(x,y)能作⊙O的切线的概率=.点评:本题考查了列表法与树状图法:利用列表法和树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.也考查了一次函数图象上点的坐标特征和切线的性质.9.(2015•昆明第20题,6分)如图,两幢建筑物AB和CD,AB⊥BD,CD⊥BD,AB=15cm,CD=20cm,AB和CD之间有一景观池,小南在A点测得池中喷泉处E点的俯角为42°,在C点测得E点的俯角为45°(点B、E、D在同一直线上),求两幢建筑物之间的距离BD(结果精确到0.1m).(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)考点:解直角三角形的应用-仰角俯角问题.分析:在RT△ABE中,根据正切函数可求得BE,在RT△DEC中,根据等腰直角三角形的性质求得ED,然后根据BD=BE+ED求解即可.解答:解:由题意得:∠AEB=42°,∠DEC=45°,∵AB⊥BD,CD⊥BD,∴在RT△ABE中,∠ABE=90°,AB=15,∠AEB=42°,∵tan∠AEB=,∴BE=≈15÷0.90=,在RT△DEC中,∠CDE=90°,∠DEC=∠DCE=45°,CD=20,∴ED=CD=20,∴BD=BE+ED=+20≈36(m).\n答:两幢建筑物之间的距离BD约为36.7m.点评:本题考查了解直角三角形的应用,要求学生借助俯角关系构造直角三角形,并结合图形利用三角函数解直角三角形.10.(2015•济南,第15题3分)如图,抛物线y=﹣2x2+8x﹣6与x轴交于点A、B,把抛物线在x轴及其上方的部分记作C1,将C1向右平移得C2,C2与x轴交于点B,D.若直线y=x+m与C1、C2共有3个不同的交点,则m的取值范围是( ) A.﹣2<m<B.﹣3<m<﹣C.﹣3<m<﹣2D.﹣3<m<﹣考点:抛物线与x轴的交点;二次函数图象与几何变换.分析:首先求出点A和点B的坐标,然后求出C2解析式,分别求出直线y=x+m与抛物线C2相切时m的值以及直线y=x+m过点B时m的值,结合图形即可得到答案.解答:解:令y=﹣2x2+8x﹣6=0,即x2﹣4x+3=0,解得x=1或3,则点A(1,0),B(3,0),由于将C1向右平移2个长度单位得C2,则C2解析式为y=﹣2(x﹣4)2+2(3≤x≤5),当y=x+m1与C2相切时,令y=x+m1=y=﹣2(x﹣4)2+2,即2x2﹣15x+30+m1=0,△=﹣8m1﹣15=0,解得m1=﹣,当y=x+m2过点B时,即0=3+m2,\nm2=﹣3,当﹣3<m<﹣时直线y=x+m与C1、C2共有3个不同的交点,故选D.点评:本题主要考查抛物线与x轴交点以及二次函数图象与几何变换的知识,解答本题的关键是正确地画出图形,利用数形结合进行解题,此题有一定的难度.11.(2015•四川成都,第28题12分)如图,在平面直角坐标系xOy中,抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于A,B两点(点A在点B的左侧),经过点A的直线l:y=kx+b与y轴交于点C,与抛物线的另一个交点为D,且CD=4AC.(1)直接写出点A的坐标,并求直线l的函数表达式(其中k,b用含a的式子表示);(2)点E是直线l上方的抛物线上的一点,若△ACE的面积的最大值为,求a的值;(3)设P是抛物线对称轴上的一点,点Q在抛物线上,以点A,D,P,Q为顶点的四边形能否成为矩形?若能,求出点P的坐标;若不能,请说明理由.考点:二次函数综合题.分析:(1)由抛物线y=ax2﹣2ax﹣3a(a<0)与x轴交于两点A、B,求得A点的坐标,作DF⊥x轴于F,根据平行线分线段成比例定理求得D的坐标,然后利用待定系数法法即可求得直线l的函数表达式.(2)设点E(m,a(m+1)(m﹣3)),yAE=k1x+b1,利用待定系数法确定yAE=a(m﹣3)x+a(m﹣3),从而确定S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,根据最值确定a的值即可;\n(3)分以AD为对角线、以AC为边,AP为对角线、以AC为边,AQ为对角线三种情况利用矩形的性质确定点P的坐标即可.解答:解:(1)令y=0,则ax2﹣2ax﹣3a=0,解得x1=﹣1,x2=3∵点A在点B的左侧,∴A(﹣1,0),如图1,作DF⊥x轴于F,∴DF∥OC,∴=,∵CD=4AC,∴==4,∵OA=1,∴OF=4,∴D点的横坐标为4,代入y=ax2﹣2ax﹣3a得,y=5a,∴D(4,5a),把A、D坐标代入y=kx+b得,解得,∴直线l的函数表达式为y=ax+a.(2)设点E(m,a(m+1)(m﹣3)),yAE=k1x+b1,则,解得:,∴yAE=a(m﹣3)x+a(m﹣3),∴S△ACE=(m+1)[a(m﹣3)﹣a]=(m﹣)2﹣a,∴有最大值﹣a=,∴a=﹣;\n(3)设P(1,p),Q(q,a(q+1)(q﹣3)),A(﹣1,0),D(4,5a),①以AD为对角线,APDQ为矩形,坐标满足.xP+xQ=xA+xD,yP+yQ=yA+yD,1+q=﹣a+4,p+a(q+1)(q﹣3)=5a,∴q=2,a(q+1)(q﹣3)=5a﹣p∴Q(2,5a﹣p),∵5a﹣p=a(2+1)(2﹣3),∴5a﹣p=﹣3a,p=8a,如图2,过P作PG∥x轴,过A作AF⊥PG,DG⊥PG,则△APF∽△PDG,∴a=﹣,∴P(1,﹣4);②以AC为边,AP为对角线,xP+xA=xQ+xD,yP+yA=yQ+yD,1+(﹣1)=q+4,P+O=a(q+1)(q﹣3)+5a,∴q=﹣4,a(q+1)(q﹣3)=P﹣5a∴Q(﹣4,21a),∵21a=p﹣5a,∴p=26a,∴P(1,26a),∵AD⊥AQ,∴kAD•kAQ=1,即﹣7a•a=﹣1∴a2=,∴a=或a=﹣(舍),∴P(1,﹣);③以AD为边,AQ为对角线,\nxP+xD=xA+xQ,yP+yD=yA+yQ,1+4=q﹣1,p+5a=a(q+1)(q﹣3)+O,∴q=6,a(q+1)(q﹣3)=P+5a∴Q(6,21a),∵5a﹣p=21a∴p=16a,∵AD⊥AP,∴kAD•kAP=1,即8a•a=﹣1,a2=﹣(舍),综上:P1(1,﹣4);,P2(1,﹣);点评:本题是二次函数的综合题,考查了待定系数法求一次函数的解析式,二次函数图象上点的坐标特征,以及矩形的判定,根据平行线分线段成比例定理求得D的坐标是本题的关键.\n