- 675.50 KB
- 2022-07-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
精品达州市2013年高中阶段教育学校招生统一考试数学本试卷分为第I卷(选择题)和第II卷(非选择题)两部分。第I卷1至2页,第II卷3至10页。考试时间120分钟,满分120分。第I卷(选择题,共30分)温馨提示:1、答第I卷前,请考生务必将姓名、准考证号、考试科目等按要求填涂在机读卡上。2、每小题选出正确答案后,请用2B铅笔把机读卡上对应题号的答案标号涂黑。3、考试结束后,请将本试卷和机读卡一并交回。一.选择题:(本题10个小题,每小题3分,共30分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.-2013的绝对值是()A.2013B.-2013C.±2013D.答案:A解析:负数的绝对值是它的相反数,故选A。2.某中学在芦山地震捐款活动中,共捐款二十一万三千元。这一数据用科学记数法表示为()A.元B.元C.元D.元答案:C解析:科学记数法写成:形式,其中,二十一万三千元=213000=元3.下列图形中,既是轴对称图形,又是中心对称图形的是()答案:D解析:A、C只是轴对称图形,不是中心对称图形;B是中心对称图形,不是轴对称轴图形,只有D符合。4.甲、乙、丙三家超市为了促销一种定价相同的商品,甲超市先降价20%,后又降价10%;乙超市连续两次降价15%;丙超市一次降价30%。那么顾客到哪家超市购买这种商品更合算( )A.甲B.乙C.丙D.一样答案:C解析:设原价a元,则降价后,甲为:a(1-20%)(1-10%)=0.72a元,\n精品乙为:(1-15%)2a=0.7225a元,丙为:(1-30%)a=0.7a元,所以,丙最便宜。5.下面是一天中四个不同时刻两座建筑物的影子,将它们按时间先后顺序正确的是( )A.(3)(1)(4)(2)B.(3)(2)(1)(4)C.(3)(4)(1)(2)D.(2)(4)(1)(3)答案:C解析:因为太阳从东边出来,右边是东,所以,早上的投影在左边,(3)最先,下午的投影在右边,(2)最后,选C。6.若方程有两个不相等的实数根,则m的取值范围在数轴上表示正确的是( )答案:B解析:因为方程有两个不相等的实数根,所以,△=36-12m>0,得m<3,故选B。7.下列说法正确的是( )A.一个游戏中奖的概率是,则做100次这样的游戏一定会中奖B.为了了解全国中学生的心理健康状况,应采用普查的方式C.一组数据0,1,2,1,1的众数和中位数都是1D.若甲组数据的方差,乙组数据的方差,则乙组数据比甲组数据稳定答案:C解析:由概率的意义,知A错;全国中学生较多,应采用抽样调查,故B也错;经验证C正确;方差小的稳定,在D中,应该是甲较稳定,故D错。8.如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600米,E为弧CD上一点,且OE⊥CD,垂足为F,OF=米,则这段弯路的长度为( )A.200π米B.100π米C.400π米D.300π米答案:A解析:CF=300,OF=,所以,∠COF=30°,∠COD=60°,\n精品OC=600,因此,弧CD的长为:=200π米9.如图,在Rt△ABC中,∠B=90°,AB=3,BC=4,点D在BC上,以AC为对角线的所有□ADCE中,DE最小的值是( )A.2B.3C.4D.5答案:B解析:由勾股定理,得AC=5,因为平行边形的对角线互相平分,所以,DE一定经过AC中点O,当DE⊥BC时,DE最小,此时OD=,所以最小值DE=310.二次函数的图象如图所示,反比例函数与一次函数在同一平面直角坐标系中的大致图象是( )答案:B解析:由二次函数图象,知a<0,c>0,>0,所以,b>0,所以,反比例函数图象在一、三象限,排除C、D,直线y=cx+a中,因为a<0,所以,选B。第II卷(非选择题,共90分)二.填空题:(本题6个小题,每小题3分,共18分。把最后答案直接填在题中的横线上)11.分解因式:=_ _.答案:x(x+3)(x-3)解析:原式=x(x2-9)=x(x+3)(x-3)12.某校在今年“五·四”开展了“好书伴我成长”的读书活动。为了解八年级450名学生的读书情况,随机调查了八年级50名学生本学期读书册数,并将统计数据制成了扇形统计图,则该校八年级学生读书册数等于3册的约有 名。答案:162解析:读书册数等于3的约占比例:1-6%-24%-30%-6%=36%,36%×450=162\n精品13.点、在反比例函数的图象上,当时,,则k的取值可以是___ _(只填一个符合条件的k的值).答案:-1解析:由题知,y随x的增大而增大,故k是负数,此题答案不唯一。14.如果实数x满足,那么代数式的值为_ _.答案:5解析:由知,得=3,原式==5。15.如图,折叠矩形纸片ABCD,使B点落在AD上一点E处,折痕的两端点分别在AB、BC上(含端点),且AB=6,BC=10。设AE=x,则x的取值范围是 .答案:2≤x≤6解析:如图,设AG=y,则BG=6-y,在Rt△GAE中,x2+y2=(6-y)2,即(,当y=0时,x取最大值为6;当y=时,x取最小值2,故有2≤x≤616.如图,在△ABC中,∠A=m°,∠ABC和∠ACD的平分线交于点A1,得∠A1;∠A1BC和∠A1CD的平分线交于点A2,得∠A2;…∠A2012BC和∠A2012CD的平分线交于点A2013,则∠A2013= 度。答案:解析:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=k∠A1CD,∠ABC=2∠A1BC,而∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,\n精品∴∠A=2∠A1,∴∠A1=,同理可得∠A1=2∠A2,即∠A=22∠A2,∴∠A2=,所以,猜想:∠A2013=三.解答题(72分,解答时应写出必要的文字说明、证明过程或演算步骤)(一)(本题2个小题,共13分)17.(6分)计算:解析:原式=1+2-+9=10+18.(7分)钓鱼岛自古以来就是中国领土。中国有关部门已对钓鱼岛及其附属岛屿开展常态化监视监测。如图,E、F为钓鱼岛东西两端。某日,中国一艘海监船从A点向正北方向巡航,其航线距离钓鱼岛最近距离CF=公里,在A点测得钓鱼岛最西端F在最东端E的东北方向(C、F、E在同一直线上)。求钓鱼岛东西两端的距离。(,,结果精确到0.1)解析:由题知,在Rt△ACF中,∠ACF=90°,∠A=30°,CF=20公里.∴cot30°=.解得,AC=60(公里).………………………(2分)又∵E在B的东北方向,且∠ACF=90°∴∠E=∠CBE=45°,∴CE=CB.………………………………………………(4分)又∵CB=AC-AB=60-22=38(公里),∴CE=38公里.………………………(5分)∴EF=CE-CF=38-20≈3.4(公里)………………………(6分)答:钓鱼岛东西两端的距离约为3.4公里.………………………(7分)(二)(本题2个小题,共14分)\n精品19.(7分)已知,则……已知,求n的值。解析:由题知f(1)+f(2)+f(3)+…+f(n)=+++…+=1-+-+-+…+-=1-………………………(4分)=.………………………(4分)又∵f(1)+f(2)+f(3)+…+f(n)=,∴=.解得n=14.………………………(6分)经检验,n=14是上述方程的解.故n的值为14.………………………(7分)20.(7分)某中学举行“中国梦·我的梦”演讲比赛。志远班的班长和学习委员都想去,于是老师制作了四张标有算式的卡片,背面朝上洗匀后,先由班长抽一张,再由学习委员在余下三张中抽一张。如果两张卡片上的算式都正确,班长去;如果两张卡片上的算式都错误,学习委员去;如果两张卡片上的算式一个正确一处错误,则都放回去,背面朝上洗匀后再抽。\n精品这个游戏公平吗?请用树状图或列表的方法,结合概率予以说明。解析:公平.………………………(1分)用列表法或树状图列出该事件的等可能情况如下:由此可知该事件共有12种等可能结果.………………………(4分)∵四张卡片中,A、B中的算式错误,C、D中的算式正确,∴都正确的有CD、DC两种,都错误的有AB、BA两种.………………………(5分)∴班长去的概率P(班长去)==,学习委员去的概率P(学习委员去)==,P(班长去)=P(学习委员去)∴这个游戏公平.………………………(7分)(三)(本题2个小题,共16分)21.(8分)已知反比例函数的图象与一次函数的图象交于A、B两点,连结AO。(1)求反比例函数和一次函数的表达式;(2)设点C在y轴上,且与点A、O构成等腰三角形,请直接写出点C的坐标。解析:(1)∵y=的图像过点(,-3),∴k1=3xy=3××(-3)=-3.∴反比例函数为y.………………………(1分)∴a==1,∴A(-1,1).………………………(2分)∴\n精品解得∴一次函数为y=-3x-2.………………………(4分)16、C(0,)、………………………(5分)或(0,-)、………………………(6分)或(0,1)、………………………(7分)或(0,2).………………………(8分)22.(8分)选取二次三项式中的两项,配成完全平方式的过程叫配方。例如①选取二次项和一次项配方:;②选取二次项和常数项配方:,或③选取一次项和常数项配方:根据上述材料,解决下面问题:(1)写出的两种不同形式的配方;(2)已知,求的值。解析::(1)=x2-8x+16-16+4=(x-4)2-12或=(x-2)2-4x(2)X=-1,y=2.因此xy=(-1)2=1(四)(本题2个小题,共17分)23.(8分)今年,6月12日为端午节。在端午节前夕,三位同学到某超市调研一种进价为2元的粽子的销售情况。请根据小丽提供的信息,解答小华和小明提出的问题。\n精品(1)小华的问题解答:解析:(1)解:设实现每天800元利润的定价为x元/个,根据题意,得(x-2)(500-×10)=800.………………………(2分)整理得:x2-10x+24=0.解之得:x1=4,x2=6.………………………(3分)∵物价局规定,售价不能超过进价的240%,即2×240%=4.8(元).∴x2=6不合题意,舍去,得x=4.答:应定价4元/个,才可获得800元的利润.………………………(4分)(2)解:设每天利润为W元,定价为x元/个,得W=(x-2)(500-×10)=-100x2+1000x-1600=-100(x-5)2+900.………………………(6分)∵x≤5时W随x的增大而增大,且x≤4.8,∴当x=4.8时,W最大,W最大=-100×(4.8-5)2+900=896>800.………………………(7分)故800元不是最大利润.当定价为4.8元/个时,每天利润最大.………………………(8分)24.(9分)通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的。下面是一个案例,请补充完整。\n精品FF原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由。(1)思路梳理∵AB=CD,∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合。∵∠ADC=∠B=90°,∴∠FDG=180°,点F、D、G共线。根据__SAS__________,易证△AFG≌_△AFE_______,得EF=BE+DF。(2)类比引申如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°。若∠B、∠D都不是直角,则当∠B与∠D满足等量关系_互补___时,仍有EF=BE+DF。(3)联想拓展如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°。猜想BD、DE、EC应满足的等量关系,并写出推理过程。解:BD2+EC2=DE2解析:(1)SAS………………………(1分)△AFE………………………(2分)(2)∠B+∠D=180°………………………(4分)(3)解:BD2+EC2=DE2.………………………(5分)∵AB=AC,∴把△ABD绕A点逆时针旋转90°至△ACG,可使AB与AC重合.∵△ABC中,∠BAC=90°.∴∠ACB+∠ACG=∠ACB+∠B=90°,即∠ECG=90°.∴EC2+CG2=EG2.………………………(7分)在△AEG与△AED中,∠EAG=∠EAC+∠CAG=∠EAC+∠BAD=90°-∠EAD=45°=∠EAD,又∵AD=AG,AE=AE,∴△AEG≌△AED.∴DE=EG.又∵CG=BD,∴BD2+EC2=DE2.………………………(9分)\n精品(五)(本题12分)25.如图,在直角体系中,直线AB交x轴于点A(5,0),交y轴于点B,AO是⊙M的直径,其半圆交AB于点C,且AC=3。取BO的中点D,连接CD、MD和OC。(1)求证:CD是⊙M的切线;(2)二次函数的图象经过点D、M、A,其对称轴上有一动点P,连接PD、PM,求△PDM的周长最小时点P的坐标;(3)在(2)的条件下,当△PDM的周长最小时,抛物线上是否存在点Q,使?若存在,求出点Q的坐标;若不存在,请说明理由。解析:(1)证明:连结CM.∵OA为⊙M直径,∴∠OCA=90°.∴∠OCB=90°.∵D为OB中点,∴DC=DO.∴∠DCO=∠DOC.………………………(1分)∵MO=MC,∴∠MCO=∠MOC.………………………(2分)∴∠DCM=∠DCO+∠MCO=∠DOC+∠MOC=∠DOM=90°.………………………(3分)又∵点C在⊙M上,∴DC是⊙M的切线.………………………(4分)(2)解:在Rt△ACO中,有OC=.又∵A点坐标(5,0),AC=3,∴OC==4.∴tan∠OAC=.∴.解得OB=.又∵D为OB中点,∴OD=.D点坐标为(0,).………………………(5分)连接AD,设直线AD的解析式为y=kx+b,则有j解得\n精品∴直线AD为y=-x+.∵二次函数的图象过M(,0)、A(5,0),∴抛物线对称轴x=.………………………(6分)∵点M、A关于直线x=对称,设直线AD与直线x=交于点P,∴PD+PM为最小.又∵DM为定长,∴满足条件的点P为直线AD与直线x=的交点.………………………(7分)当x=时,y=-+=.故P点的坐标为(,).………………………(8分)(3)解:存在.∵S△PDM=S△DAM-S△PAM=AM·yD-AM·yP=AM(yD-yp).S△QAM=AM·,由(2)知D(0,),P(,),∴×(-)=yQ解得yQ=±………………………(9分)∵二次函数的图像过M(0,)、A(5,0),∴设二次函数解析式为y=a(x-)(x-5).又∵该图象过点D(0,),a×(-)×(-5)=,a=.∴y=(x-)(x-5).………………………(10分)又∵C点在抛物线上,且yQ=±,∴(x-)(x-5)=±.解之,得x1=,x2=,x3=.\n精品∴点Q的坐标为(,),或(,),或(,-).…………(12分)