- 138.50 KB
- 2022-07-21 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争(浙江专用)2018版高考数学大一轮复习高考专题突破一高考中的导数应用问题教师用书1.若函数f(x)=kx-lnx在区间(1,+∞)上单调递增,则k的取值范围是( )A.(-∞,-2]B.(-∞,-1]C.[2,+∞)D.[1,+∞)答案 D解析 由于f′(x)=k-,f(x)=kx-lnx在区间(1,+∞)上单调递增⇔f′(x)=k-≥0在(1,+∞)上恒成立.由于k≥,而0<<1,所以k≥1.即k的取值范围为[1,+∞).2.(2016·浙江十校联考)已知函数f(x)=x3-ax2+4,若f(x)的图象与x轴正半轴有两个不同的交点,则实数a的取值范围为( )A.(1,+∞)B.(,+∞)C.(2,+∞)D.(3,+∞)答案 D解析 由题意知f′(x)=3x2-2ax=x(3x-2a),当a≤0时,不符合题意.当a>0时,f(x)在(0,)上单调递减,在(,+∞)上单调递增,所以由题意知f()<0,解得a>3,故选D.3.(2016·全国甲卷)若直线y=kx+b是曲线y=lnx+2的切线,也是曲线y=ln(x+1)的切线,则b=________.答案 1-ln2解析 y=lnx+2的切线为y=·x+lnx1+1(设切点横坐标为x1).为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争y=ln(x+1)的切线为y=x+ln(x2+1)-(设切点横坐标为x2),∴解得x1=,x2=-,∴b=lnx1+1=1-ln2.4.设函数f(x)=,g(x)=,对任意x1,x2∈(0,+∞),不等式≤恒成立,则正数k的取值范围是________.答案 [1,+∞)解析 因为对任意x1,x2∈(0,+∞),不等式≤恒成立,所以≥.因为g(x)=,所以g′(x)=e2-x(1-x).当00;当x>1时,g′(x)<0,所以g(x)在(0,1]上单调递增,在[1,+∞)上单调递减.所以当x=1时,g(x)取到最大值,即g(x)max=g(1)=e.又f(x)=e2x+≥2e(x>0).当且仅当e2x=,即x=时取等号,故f(x)min=2e.所以==,应有≥,又k>0,所以k≥1.题型一 利用导数研究函数性质例1 (2015·课标全国Ⅱ)已知函数f(x)=lnx+a(1-x).(1)讨论f(x)的单调性;(2)当f(x)有最大值,且最大值大于2a-2时,求a的取值范围.解 (1)f(x)的定义域为(0,+∞),f′(x)=-a.若a≤0,则f′(x)>0,所以f(x)在(0,+∞)上单调递增.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争若a>0,则当x∈时,f′(x)>0;当x∈时,f′(x)<0.所以f(x)在上单调递增,在上单调递减.(2)由(1)知,当a≤0时,f(x)在(0,+∞)无最大值;当a>0时,f(x)在x=取得最大值,最大值为f=ln+a=-lna+a-1.因此f>2a-2等价于lna+a-1<0.令g(a)=lna+a-1,则g(a)在(0,+∞)上单调递增,g(1)=0.于是,当0<a<1时,g(a)<0;当a>1时,g(a)>0.因此,a的取值范围是(0,1).思维升华 利用导数主要研究函数的单调性、极值、最值.已知f(x)的单调性,可转化为不等式f′(x)≥0或f′(x)≤0在单调区间上恒成立问题;含参函数的最值问题是高考的热点题型,解此类题的关键是极值点与给定区间位置关系的讨论,此时要注意结合导函数图象的性质进行分析. 已知a∈R,函数f(x)=(-x2+ax)ex(x∈R,e为自然对数的底数).(1)当a=2时,求函数f(x)的单调递增区间;(2)若函数f(x)在(-1,1)上单调递增,求a的取值范围.解 (1)当a=2时,f(x)=(-x2+2x)ex,所以f′(x)=(-2x+2)ex+(-x2+2x)ex=(-x2+2)ex.令f′(x)>0,即(-x2+2)ex>0,因为ex>0,所以-x2+2>0,解得-0,所以-x2+(a-2)x+a≥0对x∈(-1,1)都成立,为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争即a≥==(x+1)-对x∈(-1,1)都成立.令y=(x+1)-,则y′=1+>0.所以y=(x+1)-在(-1,1)上单调递增,所以y<(1+1)-=,即a≥.因此a的取值范围为a≥.题型二 利用导数研究方程的根或函数的零点问题例2 (2015·北京)设函数f(x)=-klnx,k>0.(1)求f(x)的单调区间和极值;(2)证明:若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.(1)解 函数的定义域为(0,+∞).由f(x)=-klnx(k>0),得f′(x)=x-=.由f′(x)=0,解得x=(负值舍去).f(x)与f′(x)在区间(0,+∞)上随x的变化情况如下表:x(0,)(,+∞)f′(x)-0+f(x)↘↗所以,f(x)的单调递减区间是(0,),单调递增区间是(,+∞).f(x)在x=处取得极小值f()=.(2)证明 由(1)知,f(x)在区间(0,+∞)上的最小值为f()=.因为f(x)存在零点,所以≤0,从而k≥e,当k=e时,f(x)在区间(1,]上单调递减且f()=0,所以x=是f(x)在区间(1,]上的唯一零点.当k>e时,f(x)在区间(0,)上单调递减且f(1)=>0,f()=<0,所以f(x)在区间(1,]上仅有一个零点.综上可知,若f(x)存在零点,则f(x)在区间(1,]上仅有一个零点.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争思维升华 函数零点问题一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一. 已知函数f(x)=x3-3x2+ax+2,曲线y=f(x)在点(0,2)处的切线与x轴交点的横坐标为-2.(1)求a;(2)证明:当k<1时,曲线y=f(x)与直线y=kx-2只有一个交点.(1)解 f′(x)=3x2-6x+a,f′(0)=a.曲线y=f(x)在点(0,2)处的切线方程为y=ax+2.由题设得-=-2,所以a=1.(2)证明 由(1)知,f(x)=x3-3x2+x+2.设g(x)=f(x)-kx+2=x3-3x2+(1-k)x+4.由题设知1-k>0.当x≤0时,g′(x)=3x2-6x+1-k>0,g(x)单调递增,g(-1)=k-1<0,g(0)=4,所以g(x)=0在(-∞,0]上有唯一实根.当x>0时,令h(x)=x3-3x2+4,则g(x)=h(x)+(1-k)x>h(x).h′(x)=3x2-6x=3x(x-2),h(x)在(0,2)上单调递减,在(2,+∞)上单调递增,所以g(x)>h(x)≥h(2)=0.所以g(x)=0在(0,+∞)上没有实根.综上,g(x)=0在R上有唯一实根,即曲线y=f(x)与直线y=kx-2只有一个交点.题型三 利用导数研究不等式问题例3 已知f(x)=xlnx,g(x)=-x2+ax-3.(1)对一切x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;(2)证明:对一切x∈(0,+∞),都有lnx>-成立.(1)解 对任意x∈(0,+∞),有为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争2xlnx≥-x2+ax-3,则a≤2lnx+x+,设h(x)=2lnx+x+(x>0),则h′(x)=,当x∈(0,1)时,h′(x)<0,h(x)单调递减,当x∈(1,+∞)时,h′(x)>0,h(x)单调递增,所以h(x)min=h(1)=4.因为对一切x∈(0,+∞),2f(x)≥g(x)恒成立,所以a≤h(x)min=4.(2)证明 问题等价于证明xlnx>-(x∈(0,+∞)).f(x)=xlnx(x∈(0,+∞))的最小值是-,当且仅当x=时取到,设m(x)=-(x∈(0,+∞)),则m′(x)=,易知m(x)max=m(1)=-,当且仅当x=1时取到.从而对一切x∈(0,+∞),都有lnx>-成立.思维升华 求解不等式恒成立或有解时参数的取值范围问题,一般常用分离参数的方法,但是如果分离参数后对应的函数不便于求解其最值,或者求解其函数最值繁琐时,可采用直接构造函数的方法求解. 已知函数f(x)=x3-2x2+x+a,g(x)=-2x+,若对任意的x1∈[-1,2],存在x2∈[2,4],使得f(x1)=g(x2),则实数a的取值范围是____________.答案 [-,-]解析 问题等价于f(x)的值域是g(x)的值域的子集,显然,g(x)单调递减,∴g(x)max=g(2)=,g(x)min=g(4)=-;对于f(x),f′(x)=3x2-4x+1,令f′(x)=0,解得x=或x=1,当x变化时,f′(x),f(x)的变化情况列表如下:为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争x-1(-1,)(,1)1(1,2)2f′(x)+0-0+f(x)a-4↗+a↘a↗a+2∴f(x)max=a+2,f(x)min=a-4,∴∴a∈[-,-].1.已知函数f(x)=+-lnx-,其中a∈R,且曲线y=f(x)在点(1,f(1))处的切线垂直于直线y=x.(1)求a的值;(2)求函数f(x)的单调区间.解 (1)对f(x)求导得f′(x)=--,由f(x)在点(1,f(1))处的切线垂直于直线y=x,知f′(1)=--a=-2,解得a=.(2)由(1)知f(x)=+-lnx-,则f′(x)=.令f′(x)=0,解得x=-1或x=5.因为x=-1不在f(x)的定义域(0,+∞)内,故舍去.当x∈(0,5)时,f′(x)<0,故f(x)在(0,5)内为减函数;当x∈(5,+∞)时,f′(x)>0,故f(x)在(5,+∞)内为增函数.综上,f(x)的单调增区间为(5,+∞),单调减区间为(0,5).2.已知函数f(x)=xlnx,g(x)=(-x2+ax-3)ex(a为实数).(1)当a=5时,求函数y=g(x)在x=1处的切线方程;(2)求f(x)在区间[t,t+2](t>0)上的最小值.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争解 (1)当a=5时,g(x)=(-x2+5x-3)ex,g(1)=e.又g′(x)=(-x2+3x+2)ex,故切线的斜率为g′(1)=4e.所以切线方程为y-e=4e(x-1),即4ex-y-3e=0.(2)函数f(x)的定义域为(0,+∞),f′(x)=lnx+1,当x变化时,f′(x),f(x)的变化情况如下表:x(0,)(,+∞)f′(x)-0+f(x)单调递减极小值单调递增①当t≥时,在区间[t,t+2]上f(x)为增函数,所以f(x)min=f(t)=tlnt.②当01时,f(-2b)=f(2b)≥4b2-2b-1>4b-2b-1>b,f(0)=11时曲线y=f(x)与直线y=b有且仅有两个不同交点.综上可知,如果曲线y=f(x)与直线y=b有两个不同交点,那么b的取值范围是(1,+∞).4.(2016·四川)设函数f(x)=ax2-a-lnx,其中a∈R.(1)讨论f(x)的单调性;(2)确定a的所有可能取值,使得f(x)>-e1-x在区间(1,+∞)内恒成立(e=2.718…为自然对数的底数).解 (1)f′(x)=2ax-=(x>0).当a≤0时,f′(x)<0,f(x)在(0,+∞)内单调递减.当a>0时,由f′(x)=0,有x=.此时,当x∈时,f′(x)<0,f(x)单调递减;当x∈时,f′(x)>0,f(x)单调递增.(2)令g(x)=-,s(x)=ex-1-x.则s′(x)=ex-1-1.而当x>1时,s′(x)>0,所以s(x)在区间(1,+∞)内单调递增.又由s(1)=0,有s(x)>0,从而当x>1时,g(x)>0.当a≤0,x>1时,f(x)=a(x2-1)-lnx<0.故当f(x)>g(x)在区间(1,+∞)内恒成立时,必有a>0.当01.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争由(1)有f0,所以此时f(x)>g(x)在区间(1,+∞)内不恒成立.当a≥时,令h(x)=f(x)-g(x)(x≥1).当x>1时,h′(x)=2ax-+-e1-x>x-+-=>>0.因此,h(x)在区间(1,+∞)内单调递增.又因为h(1)=0,所以当x>1时,h(x)=f(x)-g(x)>0,即f(x)>g(x)恒成立.综上,a∈.5.(2016·杭州四校联考)已知函数f(x)=aln(x+1)+x2-x,其中a为非零实数.(1)讨论函数f(x)的单调性;(2)若y=f(x)有两个极值点x1,x2,且x1-1,当a-1≥0,即a≥1时,f′(x)≥0,∴f(x)在(-1,+∞)上单调递增,当0-1,x2=,∴f(x)在区间(-1,-)上单调递增,在(-,)上单调递减,在(,+∞)上单调递增.当a<0时,∵x1<-1,∴f(x)在(-1,)上单调递减,在(,+∞)上单调递增.(2)证明 ∵00⇔aln(x2+1)+x-x2>0⇔(1-x)ln(x2+1)+x-x2>0⇔-(x2-1)(1+x2)ln(x2+1)+x2(x2-1)>0为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围\n为深入贯彻落实党的十九大精神和习近平总书记的重要指示精神,保障人民安居乐业、社会安定有序、国家长治久安、进一步巩固党的执政基础,束城镇深入贯彻全市扫黑除恶会议精神,强化措施,深入扎实开展扫黑除恶专项斗争⇔(1+x2)ln(x2+1)-x2>0,令g(x)=(1+x)ln(x+1)-x,x∈(0,1),∵g′(x)=ln(x+1)+>0,∴g(x)在(0,1)上单调递增,∴g(x)>g(0)=0.故原命题得证.为充分发动群众积极参与到扫黑除恶工作中来,束城镇通过由包片班子成员、包村干部、村书记召开各村群众大会广泛宣传动员、公布全镇扫黑除恶举报电话、邮箱和纪委举报等方式,增强人民群众通黑恶势力做斗争的决心,在全镇范围内营造了全民扫黑除恶的浓厚氛围