• 791.13 KB
  • 2022-07-22 发布

20152017全国高考理科解析几何高考题汇编

  • 14页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2015-2017高考解析几何汇编017(一)10.已知F为抛物线C:y2=4x的焦点,过F作两条互相垂直的直线l1,l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,则|AB|+|DE|的最小值为A.16B.14C.12D.102017(一)20.(12分)已知椭圆C:(a>b>0),四点P1(1,1),P2(0,1),P3(–1,),P4(1,)中恰有三点在椭圆C上.(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为–1,证明:l过定点.2017(二)9.若双曲线(,)的一条渐近线被圆所截得的弦长为2,则的离心率为A.2B.C.D.2017(二)20.(12分)设O为坐标原点,动点M在椭圆C:上,过M作x轴的垂线,垂足为N,点P满足.(1)求点P的轨迹方程;(2)设点Q在直线上,且.证明:过点P且垂直于OQ的直线l过C的左焦点F.2017(三)10.已知椭圆C:,(a>b>0)的左、右顶点分别为A1,A2,且以线段A1A2为直径的圆与直线相切,则C的离心率为A.B.C.D.14\n2017(三)20.(12分)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(1)证明:坐标原点O在圆M上;(2)设圆M过点P(4,-2),求直线l与圆M的方程.2017(天津)(5)已知双曲线的左焦点为,离心率为.若经过和两点的直线平行于双曲线的一条渐近线,则双曲线的方程为(A)(B)(C)(D)2017(天津)(19)(本小题满分14分)设椭圆的左焦点为,右顶点为,离心率为.已知是抛物线的焦点,到抛物线的准线的距离为.(I)求椭圆的方程和抛物线的方程;(II)设上两点,关于轴对称,直线与椭圆相交于点(异于点),直线与轴相交于点.若的面积为,求直线的方程.2016(二)(11)已知F1,F2是双曲线E的左,右焦点,点M在E上,MF1与轴垂直,sin,则E的离心率为(A)(B)(C)(D)22016(二)(20)(本小题满分12分)已知椭圆E:的焦点在轴上,A是E的左顶点,斜率为k(k>0)的直线交E于A,M两点,点N在E上,MA⊥NA.(I)当t=4,时,求△AMN的面积;(II)当时,求k的取值范围.14\n2016(北京)19.(本小题14分)已知椭圆C:()的离心率为,,,,的面积为1.(1)求椭圆C的方程;(2)设的椭圆上一点,直线与轴交于点M,直线PB与轴交于点N.求证:为定值.2016(一)(10)以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点.已知|AB|=,|DE|=,则C的焦点到准线的距离为(A)2(B)4(C)6(D)82016(一)20.(本小题满分12分)设圆的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.(I)证明为定值,并写出点E的轨迹方程;(II)设点E的轨迹为曲线C1,直线l交C1于M,N两点,过B且与l垂直的直线与圆A交于P,Q两点,求四边形MPNQ面积的取值范围.2016(三)(11)已知O为坐标原点,F是椭圆C:的左焦点,A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴.过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为(A)(B)(C)(D)2016(三)(20)(本小题满分12分)已知抛物线C:的焦点为F,平行于x轴的两条直线分别交C于A,B两点,交C的准线于P,Q两点.(I)若F在线段AB上,R是PQ的中点,证明AR∥FQ;14\n(II)若△PQF的面积是△ABF的面积的两倍,求AB中点的轨迹方程.2015(二)(11)已知A,B为双曲线E的左,右顶点,点M在E上,∆ABM为等腰三角形,且顶角为120°,则E的离心率为(A)√5(B)2(C)√3(D)√22015(二)20.(本小题满分12分)已知椭圆C:,直线l不过原点O且不平行于坐标轴,l与C有两个交点A,B,线段AB的中点为M。(1)证明:直线OM的斜率与l的斜率的乘积为定值;(2)若l过点,延长线段OM与C交于点P,四边形OAPB能否为平行四边形?若能,求此时l的斜率;若不能,说明理由。2015(一)(5)已知M(x0,y0)是双曲线C:上的一点,F1、F2是C上的两个焦点,若<0,则y0的取值范围是(A)(-,)(B)(-,)(C)(,)(D)(,)2015(一)(20)(本小题满分12分)在直角坐标系xoy中,曲线C:y=与直线(>0)交与M,N两点,(Ⅰ)当k=0时,分别求C在点M和N处的切线方程;(Ⅱ)y轴上是否存在点P,使得当k变动时,总有∠OPM=∠OPN?说明理由。2015(陕西)14.若抛物线的准线经过双曲线的一个焦点,则p=.2015(陕西)20.(本小题满分12分)已知椭圆()的半焦距为,原点14\n到经过两点,的直线的距离为.(I)求椭圆的离心率;(II)如图,是圆的一条直径,若椭圆经过,两点,求椭圆的方程.2017(一)10.【答案】A2017(一)20.试题分析:(1)根据,两点关于y轴对称,由椭圆的对称性可知C经过,两点.另外由知,C不经过点P1,所以点P2在C上.因此在椭圆上,代入其标准方程,即可求出C的方程;(2)先设直线P2A与直线P2B14\n的斜率分别为k1,k2,再设直线l的方程,当l与x轴垂直时,通过计算,不满足题意,再设l:(),将代入,写出判别式,利用根与系数的关系表示出x1+x2,x1x2,进而表示出,根据列出等式表示出和的关系,从而判断出直线恒过定点.试题解析:(1)由于,两点关于y轴对称,故由题设知C经过,两点.又由知,C不经过点P1,所以点P2在C上.因此解得故C的方程为.(2)设直线P2A与直线P2B的斜率分别为k1,k2,如果l与x轴垂直,设l:x=t,由题设知,且,可得A,B的坐标分别为(t,),(t,).则,得,不符合题设.从而可设l:().将代入得.由题设可知.设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=.而.由题设,故.即.解得.14\n当且仅当时,,于是l:,即,所以l过定点(2,).2017(二)9试题分析:由几何关系可得,双曲线的渐近线方程为,圆心到渐近线距离为,则点到直线的距离为,即,整理可得,双曲线的离心率.故选A.2017(二)20.(12分)2017(三)10.A2017(三)20.解(1)设14\n由可得又=4因此OA的斜率与OB的斜率之积为所以OA⊥OB故坐标原点O在圆M上.(2)由(1)可得故圆心M的坐标为,圆M的半径由于圆M过点P(4,-2),因此,故即由(1)可得,所以,解得.当m=1时,直线l的方程为x-y-2=0,圆心M的坐标为(3,1),圆M的半径为,圆M的方程为当时,直线l的方程为,圆心M的坐标为,圆M的半径为,圆M的方程为2017(天津)(5)【答案】【解析】由题意得,选B.2017(天津)(19)【答案】(1),.(2),或.【解析】(Ⅰ)解:设的坐标为.依题意,,,,解得,14\n,,于是.所以,椭圆的方程为,抛物线的方程为.所以,直线的方程为,或.2016(二)(11)【答案】A2016(二)20.(本小题满分12分)【答案】(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)先求直线的方程,再求点的纵坐标,最后求的面积;(Ⅱ)设,,将直线的方程与椭圆方程组成方程组,消去,用表示,从而表示,同理用表示,再由求.试题解析:(I)设,则由题意知,当时,的方程为,.由已知及椭圆的对称性知,直线的倾斜角为.因此直线的方程为.将代入得.解得或,所以.14\n因此的面积.(II)由题意,,.将直线的方程代入得.由得,故.由题设,直线的方程为,故同理可得,由得,即.当时上式不成立,因此.等价于,即.由此得,或,解得.因此的取值范围是.2016(北京)【答案】(1);(2)详见解析.14\n(2)由(Ⅰ)知,,2016(一)(10)B2016(一)20.(本小题满分12分)解:(Ⅰ)因为,,故,所以,故.又圆的标准方程为,从而,所以.由题设得,,,由椭圆定义可得点的轨迹方程为:().(Ⅱ)当与轴不垂直时,设的方程为,,.14\n由得.则,.所以.过点且与垂直的直线:,到的距离为,所以.故四边形的面积.可得当与轴不垂直时,四边形面积的取值范围为.当与轴垂直时,其方程为,,,四边形的面积为12.综上,四边形面积的取值范围为.2016(三)(11)A2016(三)(20)解:由题设.设,则,且.记过两点的直线为,则的方程为......3分(Ⅰ)由于在线段上,故.记的斜率为,的斜率为,则.所以.......5分(Ⅱ)设与轴的交点为,则.14\n由题设可得,所以(舍去),.设满足条件的的中点为.当与轴不垂直时,由可得.而,所以.当与轴垂直时,与重合.所以,所求轨迹方程为.....12分2015(二)【答案】D2015(二)14\n2015(一)(5)2015(一)(20)【答案】(Ⅰ)或(Ⅱ)存在【解析】试题分析:(Ⅰ)先求出M,N的坐标,再利用导数求出M,N.(Ⅱ)先作出判定,再利用设而不求思想即将代入曲线C的方程整理成关于的一元二次方程,设出M,N的坐标和P点坐标,利用设而不求思想,将直线PM,PN的斜率之和用表示出来,利用直线PM,PN的斜率为0,即可求出关系,从而找出适合条件的P点坐标.试题解析:(Ⅰ)由题设可得,,或,.∵,故在=处的到数值为,C在处的切线方程为,即.故在=-处的到数值为-,C在处的切线方程为,即.故所求切线方程为或.……5分(Ⅱ)存在符合题意的点,证明如下:设P(0,b)为复合题意得点,,,直线PM,PN的斜率分别为.将代入C得方程整理得.∴.∴==.当时,有=0,则直线PM的倾斜角与直线PN的倾斜角互补,故∠OPM=∠OPN,所以符合题意.……12分考点:抛物线的切线;直线与抛物线位置关系;探索新问题;运算求解能力2015(s陕西)【答案】14

相关文档