• 1.25 MB
  • 2022-07-22 发布

《大高考》2016届高考物理五年高考真题专题10 电磁感应

  • 33页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
考点一 电磁感应现象 楞次定律1.(2015·新课标全国Ⅰ,19,6分)(难度★★)(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示.实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是(  )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析 圆盘运动过程中,半径方向的金属条在切割磁感线,在圆心和边缘之间产生了感应电动势,选项A正确;圆盘在径向的辐条切割磁感线过程中,内部距离圆心远近不同的点电势不等而形成涡流,产生的磁场又导致磁针转动,选项B正确;圆盘转动过程中,圆盘位置、圆盘面积和磁场都没有发生变化,所以没有磁通量的变化,选项C错误;圆盘本身呈现电中性,不会产生环形电流,选项D错误.答案 AB2.(2014·新课标全国Ⅰ,14,6分)(难度★★)在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是(  )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化\nC.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化解析 将绕在磁铁上的线圈与电流表组成一闭合回路,因线圈中的磁通量没有变化,故不能观察到感应电流,选项A不符合题意;在一通电线圈旁放置一连有电流表的闭合线圈时,如果给线圈通以恒定电流,产生不变的磁场,则在另一线圈中不会产生感应电流,选项B不符合题意;在线圈中插入条形磁铁后,再到相邻房间去观察电流表时,磁通量已不再变化,因此也不能观察到感应电流,选项C不符合题意;绕在同一铁环上的两个线圈,在给一个线圈通电或断电的瞬间,线圈产生的磁场变化,使穿过另一线圈的磁通量变化,因此,能观察到感应电流,选项D符合题意.答案 D3.(2014·全国大纲,20,6分)(难度★★)很多相同的绝缘铜圆环沿竖直方向叠放,形成一很长的竖直圆筒.一条形磁铁沿圆筒的中心轴竖直放置,其下端与圆筒上端开口平齐.让条形磁铁从静止开始下落.条形磁铁在圆筒中的运动速率(  )A.均匀增大B.先增大,后减小C.逐渐增大,趋于不变D.先增大,再减小,最后不变解析 对磁铁受力分析可知,磁铁重力不变,磁场力随速率的增大而增大,当重力等于磁场力时,磁铁匀速下落,所以选C项.答案 C4.(2014·广东理综,15,4分)(难度★★)如图所示,上下开口、内壁光滑的铜管P和塑料管Q竖直放置,小磁块先后在两管中从相同高度处由静止释放,并落至底部,则小磁块(  )\nA.在P和Q中都做自由落体运动B.在两个下落过程中的机械能都守恒C.在P中的下落时间比在Q中的长D.落至底部时在P中的速度比在Q中的大解析 小磁块在铜管中下落时,由于电磁阻尼作用,不做自由落体运动,而在塑料管中不受阻力作用而做自由落体运动,因此在P中下落得慢,用时长,到达底端速度小,C项正确,A、B、D错误.答案 C5.(2014·山东理综,16,6分)(难度★★★)(多选)如图,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M、N两区的过程中,导体棒所受安培力分别用FM、FN表示.不计轨道电阻.以下叙述正确的是(  )A.FM向右B.FN向左C.FM逐渐增大D.FN逐渐减小解析 直导线产生的磁场在M区域垂直纸面向外,在N区域垂直纸面向里,根据右手定则,导体棒上的感应电流在M区域向下,在N区域向上,由左手定则判定,在M、N区域导体棒所受安培力均向左,故A错误,B正确;I感=,F安=BI感L=,离直导线越近处B越大,所以FM逐渐增大,FN逐渐减小,C、D正确.答案 BCD6.(2014·四川理综,6,6分)(难度★★★)(多选)如图所示,不计电阻的光滑U形金属框水平放置,光滑、竖直玻璃挡板H、P固定在框上,H、P的间距很小.质量为0.2kg的细金属杆CD恰好无挤压地放在两挡板之间,与金属框接触良好并围成边长为1m的正方形,其有效电阻为0.1Ω.\n此时在整个空间加方向与水平面成30°角且与金属杆垂直的匀强磁场,磁感应强度随时间变化规律是B=(0.4-0.2t)T,图示磁场方向为正方向.框、挡板和杆不计形变.则(  )A.t=1s时,金属杆中感应电流方向从C到DB.t=3s时,金属杆中感应电流方向从D到CC.t=1s时,金属杆对挡板P的压力大小为0.1ND.t=3s时,金属杆对挡板H的压力大小为0.2N解析 据已知B=(0.4-0.2t)T可知t=1s时,正方向的磁场在减弱,由楞次定律可判定电流方向为由C到D,A项正确;同理可判定B项错误;t=1s时感应电动势E==·S·sin30°=0.1V,I=E/R=1A,安培力F安=BIL=0.2N,对杆受力分析如图.对挡板P的压力大小为FN=FN′=F安cos60°=0.1N,C项正确;同理可得t=3s时对挡板H的压力大小为0.1N,D项错误.答案 AC7.(2013·新课标全国Ⅱ,19,6分)(难度★★)(多选)在物理学发展过程中,观测、实验假说和逻辑推理等方法都起到了重要作用.下列叙述符合史实的是(  )A.奥斯特在实验中观察到电流的磁效应,该效应揭示了电和磁之间存在联系B.安培根据通电螺线管的磁场和条形磁铁的磁场的相似性,提出了分子电流假说C.法拉第在实验中观察到,在通有恒定电流的静止导线附近的固定导线圈中,会出现感应电流\nD.楞次在分析了许多实验事实后提出,感应电流应具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化解析 电流能产生磁场,说明电和磁之间存在联系,A项正确;为解释磁现象的电本质,安培根据螺线管和条形磁铁的磁场的相似性,提出了分子电流假说,B项正确;恒定电流附近的固定导线框,不会产生感应电流,C项错误;楞次通过实验,得出了楞次定律,D项正确.答案 ABD8.(2012·北京理综,19,6分)(难度★★★)物理课上,老师做了一个奇妙的“跳环实验”.如图,他把一个带铁芯的线圈L、开关S和电源用导线连接起来后,将一金属套环置于线圈L上,且使铁芯穿过套环.闭合开关S的瞬间,套环立刻跳起.某同学另找来器材再探究此实验.他连接好电路,经重复试验,线圈上的套环均未动.对比老师演示的实验,下列四个选项中,导致套环未动的原因可能是(  )A.线圈接在了直流电源上B.电源电压过高C.所选线圈的匝数过多D.所用套环的材料与老师的不同解析 当闭合S瞬间,线圈L内产生的磁场B及磁通量的变化率,随电压及线圈匝数增加而增大,如果套环是金属材料又闭合,由楞次定律可知,环内会产生感应电流I及磁场B′,环会受到向上的安培力F,当F>mg时,环跳起,越大,环电阻越小,F越大.如果环越轻,跳起效果越好,所以选项B、C错误;如果套环换用电阻大密度大的材料,I减小F减小,mg增大,套环可能无法跳起,选项D正确;如果使用交流电,S闭合后,套环受到的安培力大小及方向(上、下)周期性变化,S闭合瞬间,F大小、方向都\n不确定,直流电效果会更好,选项A错误.答案 D考点二 法拉第电磁感应定律 自感和涡流1.(2015·新课标全国Ⅱ,15,6分)(难度★★★)如图,直角三角形金属框abc放置的匀强磁场中,磁感应强度大小为B,方向平行于ab边向上.当金属框绕ab边以角速度ω逆时针转动时,a、b、c三点的电势分别为Ua、Ub、Uc.已知bc边的长度为l.下列判断正确的是(  )A.Ua>Uc,金属框中无电流B.Ub>Uc,金属框中电流方向沿abcaC.Ubc=-Bl2ω,金属框中无电流D.Ubc=Bl2ω,金属框中电流方向沿acba解析 金属框绕ab边转动时,闭合回路abc中的磁通量始终为零(即不变),所以金属框中无电流.金属框在逆时针转动时,bc边和ac边均切割磁感线,由右手定则可知φb<φc,φa<φc,所以根据E=Blv可知,Ubc=Uac=-Blv=-Bl=-Bl2ω.由以上分析可知选项C正确.答案 C2.(2015·重庆理综,4,6分)(难度★★)图为无线充电技术中使用的受电线圈示意图,线圈匝数为n,面积为S.若在t1到t2时间内,匀强磁场平行于线圈轴线向右穿过线圈,其磁感应强度大小由B1均匀增加到B2,则该段时间线圈两端a和b之间的电势差φa-φb(  )\nA.恒为B.从0均匀变化到C.恒为-D.从0均匀变化到-解析 由于磁感应强度均匀增大,故φa-φb为定值,由楞次定律可得φa<φb,故由法拉第电磁感应定律得φa-φb=-,故C项正确.答案 C3.(2015·山东理综,17,6分)(难度★★★)(多选)如图,一均匀金属圆盘绕通过其圆心且与盘面垂直的轴逆时针匀速转动.现施加一垂直穿过圆盘的有界匀强磁场,圆盘开始减速.在圆盘减速过程中,以下说法正确的是(  )A.处于磁场中的圆盘部分,靠近圆心处电势高B.所加磁场越强越易使圆盘停止转动C.若所加磁场反向,圆盘将加速转动D.若所加磁场穿过整个圆盘,圆盘将匀速转动解析 由右手定则可知,处于磁场中的圆盘部分,靠近圆心处电势高,选项A正确;根据E=BLv可知所加磁场越强,则感应电动势越大,感应电流越大,产生的阻碍圆盘转动的安培力越大,则圆盘越容易停止转动,选项B正确;若加反向磁场,根据楞次定律可知安培力阻碍圆盘的转动,故圆盘仍减速转\n动,选项C错误;若所加磁场穿过整个圆盘,则圆盘中无感应电流,不产生安培力,圆盘匀速转动,选项D正确.答案 ABD4.(2015·海南单科,2,3分)(难度★★)如图,空间有一匀强磁场,一直金属棒与磁感应强度方向垂直,当它以速度v沿与棒和磁感应强度都垂直的方向运动时,棒两端的感应电动势大小为ε,将此棒弯成两段长度相等且相互垂直的折线,置于与磁感应强度相垂直的平面内,当它沿两段折线夹角平分线的方向以速度v运动时,棒两端的感应电动势大小为ε′.则等于(  )A.B.C.1D.解析 设折弯前导体切割磁感线的长度为L,ε=BLv;折弯后,导体切割磁感线的有效长度为L′==L,故产生的感应电动势为ε′=BL′v=B·Lv=ε,所以=,B正确.答案 B5.(2014·新课标全国Ⅰ,18,6分)(难度★★★)如图(a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流.用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是(  )\n解析 通电线圈中产生的磁场B=kI(k为比例系数);在另一线圈中的磁通量Φ=BS=kIS,由法拉第电磁感应定律可知,在另一线圈中产生的感应电动势E=n,由图(b)可知,|Ucd|不变,则||不变,故||不变,故选项C正确.答案 C6.(2014·江苏单科,1,3分)(难度★★)如图所示,一正方形线圈的匝数为n,边长为a,线圈平面与匀强磁场垂直,且一半处在磁场中.在Δt时间内,磁感应强度的方向不变,大小由B均匀地增大到2B.在此过程中,线圈中产生的感应电动势为(  )A.B.C.D.解析 由法拉第电磁感应定律知线圈中产生的感应电动势E=n=n·S=n·,得E=,选项B正确.答案 B7.(2013·北京理综,17,6分)(难度★★)如图所示,在磁感应强度为B、方向垂直纸面向里的匀强磁场中,金属杆MN在平行金属导轨上以速度v向右匀速\n滑动,MN中产生的感应电动势为E1;若磁感应强度增为2B,其他条件不变,MN中产生的感应电动势变为E2.则通过电阻R的电流方向及E1与E2之比E1∶E2分别为(  )A.c→a,2∶1B.a→c,2∶1C.a→c,1∶2D.c→a,1∶2解析 金属棒MN向右切割磁感线,产生感应电动势,由安培定则可知,电阻中电流方向为a→c.E1=BLv,E2=2BLv,所以E1∶E2=1∶2.综上所述,C正确.答案 C8.(2012·课标全国,19,6分)(难度★★★)如图所示,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为(  )A.   B.   C.   D.解析 设圆的半径为r,当其绕过圆心O的轴匀速转动时,圆弧部分不切割磁感线,不产生感应电动势,而在转过半周的过程中仅有一半直径在磁场中,产生的感应电动势为E=B0rv=B0r·=B0r2ω;当线框不动时,E′=·.由闭合电路欧姆定律得I=,要使I=I′必须使E=E′,可得C正\n确.答案 C9.(2015·广东理综,35,18分)(难度★★★)如图(a)所示,平行长直金属导轨水平放置,间距L=0.4m,导轨右端接有阻值R=1Ω的电阻,导体棒垂直放置在导轨上,且接触良好,导体棒及导轨的电阻均不计,导轨间正方形区域abcd内有方向竖直向下的匀强磁场,bd连线与导轨垂直,长度也为L,从0时刻开始,磁感应强度B的大小随时间t变化,规律如图(b)所示;同一时刻,棒从导轨左端开始向右匀速运动,1s后刚好进入磁场,若使棒在导轨上始终以速度v=1m/s做直线运动,求:(1)棒进入磁场前,回路中的电动势E;(2)棒在运动过程中受到的最大安培力F,以及棒通过三角形abd区域时电流i与时间t的关系式.解析 (1)棒进入磁场前E==S·①由几何关系得S=L2②由题图知=0.5T/S③联立①②③解得E=0.04V④(2)棒在bd位置时E最大Em=BLv⑤Im=⑥\nF安=BImL⑦代入得F安==0.04N,方向向左⑧在abd区域,t时刻有效长度L′=v×(t-1)×2=2v(t-1)⑨E′=BL′v⑩i===(t-1)A (1s<t<1.2s)⑪答案 (1)0.04V (2)0.04N, 方向向左i=(t-1)A (1s<t<1.2s)10.(2014·新课标全国Ⅱ,25,19分)(难度★★★★)半径分别为r和2r的同心圆形导轨固定在同一水平面内,一长为r、质量为m且质量分布均匀的直导体捧AB置于圆导轨上面,BA的延长线通过圆导轨中心O,装置的俯视图如图所示.整个装置位于一匀强磁场中,磁感应强度的大小为B,方向竖直向下.在内圆导轨的C点和外圆导轨的D点之间接有一阻值为R的电阻(图中未画出).直导体棒在水平外力作用下以角速度ω绕O逆时针匀速转动,在转动过程中始终与导轨保持良好接触.设导体棒与导轨之间的动摩擦因数为μ,导体棒和导轨的电阻均可忽略.重力加速度大小为g.求(1)通过电阻R的感应电流的方向和大小;(2)外力的功率.解析 (1)解法一 在Δt时间内,导体棒扫过的面积为ΔS=ωΔt[(2r)2-r2]①根据法拉第电磁感应定律,导体棒上感应电动势的大小为E=②\n根据右手定则,感应电流的方向是从B端流向A端.因此,通过电阻R的感应电流的方向是从C端流向D端.由欧姆定律可知,通过电阻R的感应电流的大小I满足I=③联立①②③式得I=④解法二 E=Brv=Br=Br2ωI==由右手定则判得通过R的感应电流从C→D解法三 取Δt=TE===Br2ωI==由右手定则判得通过R的感应电流从C→D(2)解法一 在竖直方向有mg-2FN=0⑤式中,由于质量分布均匀,内、外圆导轨对导体棒的支持力大小相等,其值为FN.两导轨对运行的导体棒的滑动摩擦力均为Ff=μFN⑥在Δt时间内,导体棒在内、外圆导轨上扫过的弧长分别为l1=rωΔt⑦和l2=2rωΔt⑧克服摩擦力做的总功为WFf=Ff(l1+l2)⑨\n在Δt时间内,消耗在电阻R上的功为WR=I2RΔt⑩根据能量转化和守恒定律知,外力在Δt时间内做的功为W=WFf+WR⑪外力的功率为P=⑫由④至⑫式得P=μmgωr+⑬解法二 由能量守恒P=PR+PFf在竖直方向2FN=mg,则FN=mg,得Ff=μFN=μmgPFf=μmgωr+μmg·ω·2r=μmgωrPR=I2R=所以P=μmgωr+.答案 (1) 方向:由C端到D端(2)μmgωr+11.(2014·浙江理综,24,20分)(难度★★★)某同学设计一个发电测速装置,工作原理如图所示.一个半径为R=0.1m的圆形金属导轨固定在竖直平面上,一根长为R的金属棒OA,A端与导轨接触良好,O端固定在圆心处的转轴\n上.转轴的左端有一个半径为r=R/3的圆盘,圆盘和金属棒能随转轴一起转动.圆盘上绕有不可伸长的细线,下端挂着一个质量为m=0.5kg的铝块.在金属导轨区域内存在垂直于导轨平面向右的匀强磁场,磁感应强度B=0.5T.a点与导轨相连,b点通过电刷与O端相连.测量a、b两点间的电势差U可算得铝块速度.铝块由静止释放,下落h=0.3m时,测得U=0.15V.(细线与圆盘间没有相对滑动,金属棒、导轨、导线及电刷的电阻均不计,重力加速度g=10m/s2)(1)测U时,与a点相接的是电压表的“正极”还是“负极”?(2)求此时铝块的速度大小;(3)求此下落过程中铝块机械能的损失.解析 (1)由右手定则知,金属棒产生的感应电动势的方向由O→A,故A端电势高于O端电势,与a点相接的是电压表的“正极”.(2)由电磁感应定律得U=E=①ΔΦ=BR2Δθ②又Δθ=ωΔt③由①②③得:U=BωR2又v=rω=ωR所以v==2m/s\n(3)ΔE=mgh-mv2ΔE=0.5J答案 (1)正极 (2)2m/s (3)0.5J考点三 电磁感应中的图象问题1.(2015·山东理综,19,6分)(难度★★)如图甲,R0为定值电阻,两金属圆环固定在同一绝缘平面内.左端连接在一周期为T0的正弦交流电源上,经二极管整流后,通过R0的电流i始终向左,其大小按图乙所示规律变化.规定内圆环a端电势高于b端时,a、b间的电压uab为正,下列uabt图象可能正确的是(  )解析 在第一个0.25T0时间内,通过大圆环的电流为瞬时针逐渐增加,由楞次定律和右手螺旋定则可判断内环内a端电势高于b端,因电流的变化率逐渐减小,故内环的电动势逐渐减小;同理在第0.25T0~0.5T0时间内,通过大圆环的电流为瞬时针逐渐减小,由楞次定律和右手螺旋定则可判断内环的a端电势低于b端,因电流的变化率逐渐变大故内环的电动势逐渐变大,故选项C正确.答案 C\n2.(2013·全国大纲卷,17,6分)(难度★★)纸面内两个半径均为R的圆相切于O点,两圆形区域内分别存在垂直纸面的匀强磁场,磁感应强度大小相等、方向相反,且不随时间变化.一长为2R的导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,角速度为ω,t=0时,OA恰好位于两圆的公切线上,如图所示.若选取从O指向A的电动势为正,下列描述导体杆中感应电动势随时间变化的图象可能正确的是(  )解析 导体杆OA绕过O点且垂直于纸面的轴顺时针匀速旋转,在转过180°的过程中,切割磁感线的导体棒长度先不均匀增大后减小,由右手定则可判断出感应电动势的方向为由O指向A为正,所以下列描述导体杆中感应电动势随时间变化的图象可能正确的是C.答案 C3.(2013·新课标全国Ⅱ,16,6分)(难度★★★)如图,在光滑水平桌面上有一边长为L、电阻为R的正方形导线框;在导线框右侧有一宽度为d(d>L)的条形匀强磁场区域,磁场的边界与导线框的一边平行,磁场方向竖直向下.导线框以某一初速度向右运动.t=0时导线框的右边恰好与磁场的左边界重合,随后导线框进入并通过磁场区域.下列v-t图象中,可能正确描述上述过程的是(  )解析 进入阶段,导线框受到的安培力F安=BIL=,方向向左,所以导\n线框速度减小,安培力减小,所以进入阶段导线框做的是加速度减小的减速运动.全部进入之后,磁通量不变化,根据楞次定律,电路中没有感应电流,速度不变.出磁场阶段,导线框受到的安培力F安=BIL=,方向向左.所以导线框速度减小,安培力减小,所以出磁场阶段导体框做的是加速度减小的减速运动.综上所述,D正确.答案 D4.(2013·浙江理综,15)(难度★★)磁卡的磁条中有用于存储信息的磁极方向不同的磁化区,刷卡器中有检测线圈.当以速度v0刷卡时,在线圈中产生感应电动势,其E-t关系如图所示.如果只将刷卡速度改为,线圈中的E-t关系图可能是(  )解析 从Et图象可以看出,刷卡速度为v0时,产生感应电动势的最大值为E0,所用时间为t0;当刷卡速度变为时,根据E=Blv可知,此时产生感应电动势的最大值E=,由于刷卡器及卡的长度未变,故刷卡时间变为2t0,故选项D正确.答案 D5.(2013·福建理综,18分)(难度★★★)如图,矩形闭合导体线框在匀强磁场上方,由不同高度静止释放,用t1、t2分别表示线框ab边和cd边刚进入磁场的时\n刻.线框下落过程形状不变,ab边始终保持与磁场水平边界线OO′平行,线框平面与磁场方向垂直.设OO′下方磁场区域足够大,不计空气影响,则下列哪一个图象不可能反映线框下落过程中速度v随时间t变化的规律(  )解析 ab边在进入磁场时所受的安培力F=BIL=B·L=,当F==mg时,匀速进入,D正确;当F>mg时线框减速,加速度a==-g,v减小,则a减小,v-t图线此阶段斜率最小,A错误、B正确;当F<mg时线框加速,加速度a==g-,v增大,则a减小,C正确.所以选A.答案 A6.(2012·新课标全国卷,20,6分)(难度★★★)如图所示,一载流长直导线和一矩形导线框固定在同一平面内,线框在长直导线右侧,且其长边与长直导线平行.已知在t=0到t=t1的时间间隔内,直导线中电流i发生某种变化,而线框中的感应电流总是沿顺时针方向;线框受到的安培力的合力先水平向左、后水平向右.设电流i正方向与图中箭头所示方向相同,则i随时间t变化的图线可能是(  )\n解析 线框中的感应电流沿顺时针方向,由楞次定律可知,直导线中电流向上减弱或向下增强,所以首先将B、D排除掉.又知线框所受安培力先水平向左、后水平向右,即线框先靠近导线,后远离导线,根据楞次定律可知,电流先减小后增大,C明显也不对,所以仅有A正确.答案 A7.(2014·安徽理综,23,16分)(难度★★★★)如图1所示,匀强磁场的磁感应强度B为0.5T,其方向垂直于倾角θ为30°的斜面向上.绝缘斜面上固定有“∧”形状的光滑金属导轨MPN(电阻忽略不计),MP和NP长度均为2.5m,MN连线水平,长为3m.以MN中点O为原点、OP为x轴建立一维坐标系Ox.一根粗细均匀的金属杆CD,长度d为3m、质量m为1kg、电阻R为0.3Ω,在拉力F的作用下,从MN处以恒定速度v=1m/s在导轨上沿x轴正向运动(金属杆与导轨接触良好).g取10m/s2.(1)求金属杆CD运动过程中产生的感应电动势E及运动到x=0.8m处电势差UCD;(2)推导金属杆CD从MN处运动到P点过程中拉力F与位置坐标x的关系式,并在图2中画出F-x关系图象;(3)求金属杆CD从MN处运动到P点的全过程产生的焦耳热.解析 (1)金属杆CD在匀速运动中产生的感应电动势E=Blv(l=d),解得E=1.5V(D点电势高)当x=0.8m时,金属杆在导轨间的电势差为零.设此时杆在导轨外的长度为l外,则\nl外=d-d,OP=,得l外=1.2m由楞次定律判断D点电势高,故C、D两端电势差UCD=-Bl外v,即UCD=-0.6V.(2)杆在导轨间的长度l与位置x关系是l=d=3-x对应的电阻Rl为Rl=R,电流I=杆受的安培力F安=BIl=7.5-3.75x根据平衡条件得F=F安+mgsinθF=12.5-3.75x(0≤x≤2)画出的F-x图象如图所示(3)外力F所做的功WF等于F-x图线下所围的面积,即WF=×2J=17.5J而杆的重力势能增加量ΔEp=mgOPsinθ=10J故全过程产生的焦耳热Q=WF-ΔEp=7.5J答案 见解析考点四 电磁感应的综合问题1.(2015·安徽理综,19,6分)(难度★★★)如图所示,abcd为水平放置的平行“”形光滑金属导轨,间距为l,导轨间有垂直于导轨平面的匀强磁场,磁感应强度大小为B,导轨电阻不计.已知金属杆MN倾斜放置,与导轨成θ角,单位长度的电阻为r,保持金属杆以速度v沿平行于cd的方向滑动(金属杆滑动过程中与导轨接触良好).则(  )\nA.电路中感应电动势的大小为B.电路中感应电流的大小为C.金属杆所受安培力的大小为D.金属杆的发热功率为解析 电路中的感应电动势E=Blv,感应电流I===故A错误,B正确;金属杆所受安培力大小F=BI=,故C错误;金属杆的发热功率P=I2R=I2r=,故D错误.答案 B2.(2015·福建理综,18,6分)(难度★★★)如图,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad处向bc滑动的过程中(  )A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大\nD.线框消耗的电功率先减小后增大解析 设PQ左侧电路的电阻为Rx,则右侧电路的电阻为3R-Rx,所以外电路的总电阻为R外=,外电路电阻先增大后减小,所以路端电压先增大后减小,所以B错误;电路的总电阻先增大后减小,再根据闭合电路的欧姆定律可得PQ中的电流,I=先减小后增大,故A错误;由于导体棒做匀速运动,拉力等于安培力,即F=BIL,拉力的功率P=BILv,故先减小后增大,所以C正确;外电路的总电阻R外=,最大值为R,小于导体棒的电阻R,又外电阻先增大后减小,由电源的输出功率与外电阻的关系图象可知,线框消耗的电功率先增大后减小,故D错误.答案 C3.(2014·安徽理综,20,6分)(难度★★)英国物理学家麦克斯韦认为,磁场变化时会在空间激发感生电场.如图所示,一个半径为r的绝缘细圆环水平放置,环内存在竖直向上的匀强磁场B,环上套一带电荷量为+q的小球.已知磁感应强度B随时间均匀增加,其变化率为k,若小球在环上运动一周,则感生电场对小球的作用力所做功的大小是(  )A.0B.r2qkC.2πr2qkD.πr2qk解析 变化的磁场使回路中产生的感生电动势E==·S=kπr2,则\n感生电场对小球的作用力所做的功W=qU=qE=qkπr2,选项D正确.答案 D4.(2013·天津理综,3,6分)(难度★★★)如图所示,纸面内有一矩形导体闭合线框abcd,ab边长大于bc边长,置于垂直纸面向里、边界为MN的匀强磁场外,线框两次匀速地完全进入磁场,两次速度大小相同,方向均垂直于MN.第一次ab边平行MN进入磁场,线框上产生的热量为Q1,通过线框导体横截面的电荷量为q1;第二次bc边平行MN进入磁场,线框上产生的热量为Q2,通过线框导体横截面的电荷量为q2,则(  )A.Q1>Q2,q1=q2B.Q1>Q2,q1>q2C.Q1=Q2,q1=q2D.Q1=Q2,q1>q2解析 设线框边长分别为l1、l2,线框中产生的热量Q=I2Rt=()2·R·==l1.由于lab>lbc,所以Q1>Q2.通过线框导体横截面的电荷量q=I·Δt=·Δt==,故q1=q2,A选项正确.答案 A5.(2012·山东理综,20,4分)(难度★★★)(多选)如图所示,相距为L的两条足够长的光滑平行金属导轨与水平面的夹角为θ,上端接有定值电阻R,匀强磁场垂直于导轨平面,磁感应强度为B.将质量为m的导体棒由静止释放,当速度达到v时开始匀速运动,此时对导体棒施加一平行于导轨向下的拉力,并保持拉力的功率恒为P,导体棒最终以2v的速度匀速运动.导体棒始终与导轨垂直且接触良好,不计导轨和导体棒的电阻,重力加速度为g.下列选项正确的是(  )\nA.P=2mgvsinθB.P=3mgvsinθC.当导体棒速度达到时加速度大小为sinθD.在速度达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功解析 对导体棒受力分析如图.当导体棒以v匀速运动时(如图甲),应有:mgsinθ=F安=BIL=;当加力F后以2v匀速运动时(如图乙),F+mgsinθ=,两式联立得F=mgsinθ,则P=F·2v=2mgvsinθ,A正确,B错误;由牛顿第二定律,当导体棒的速度为时,a===sinθ,C正确;由功能关系,当导体棒达到2v以后匀速运动的过程中,R上产生的焦耳热等于拉力所做的功与减少的重力势能之和,D错误.答案 AC6.(2015·江苏单科,13,15分)(难度★★★)做磁共振(MRI)检查时,对人体施加的磁场发生变化时会在肌肉组织中产生感应电流.某同学为了估算该感应电流对肌肉组织的影响,将包裹在骨骼上的一圈肌肉组织等效成单匝线圈,线圈的半径r=5.0cm,线圈导线的截面积A=0.80cm2,电阻率ρ=1.5Ω·m.如图所示,匀强磁场方向与线圈平面垂直,若磁感应强度B在0.3s\n内从1.5T均匀地减为零,求:(计算结果保留一位有效数字)(1)该圈肌肉组织的电阻R;(2)该圈肌肉组织中的感应电动势E;(3)0.3s内该圈肌肉组织中产生的热量Q.解析 (1)由电阻定律R=ρ,代入数据解得R=6×103Ω(2)感应电动势E=πr2,代入数据解得E=4×10-2V(3)由焦耳定律得Q=Δt,代入数据解得Q=8×10-8J答案 (1)6×103Ω (2)4×10-2V (3)8×10-8J7.(2015·海南单科,13,10分)(难度★★★)如图,两平行金属导轨位于同一水平面上,相距l,左端与一电阻R相连;整个系统置于匀强磁场中,磁感应强度大小为B,方向竖直向下.一质量为m的导体棒置于导轨上,在水平外力作用下沿导轨以速率v匀速向右滑动,滑动过程中始终保持与导轨垂直并接触良好.已知导体棒与导轨间的动摩擦因数为μ,重力加速度大小为g,导轨和导体棒的电阻均可忽略.求(1)电阻R消耗的功率;(2)水平外力的大小.解析 (1)导体切割磁感线运动产生的电动势为E=Blv,根据欧姆定律,闭合回路中的感应电流为I=\n电阻R消耗的功率为P=I2R,联立可得P=(2)对导体棒受力分析,受到向左的安培力和向左的摩擦力,向右的外力,三力平衡,故有F安+μmg=F,F安=BIl=B··l,故F=+μmg答案 (1) (2)+μmg8.(2015·天津理综,11,18分)(难度★★★★)如图所示,“凸”字形硬质金属线框质量为m,相邻各边互相垂直,且处于同一竖直平面内,ab边长为l,cd边长为2l,ab与cd平行,间距为2l.匀强磁场区域的上下边界均水平,磁场方向垂直于线框所在平面.开始时,cd边到磁场上边界的距离为2l,线框由静止释放,从cd边进入磁场直到ef、pq边进入磁场前,线框做匀速运动,在ef、pq边离开磁场后,ab边离开磁场之前,线框又做匀速运动.线框完全穿过磁场过程中产生的热量为Q.线框在下落过程中始终处于原竖直平面内,且ab、cd边保持水平,重力加速度为g.求:(1)线框ab边将离开磁场时做匀速运动的速度大小是cd边刚进入磁场时的几倍;(2)磁场上下边界间的距离H.解析 (1)设磁场的磁感应强度大小为B,cd边刚进入磁场时,线框做匀速运动的速度为v1,cd边上的感应电动势为E1,由法拉第电磁感应定律,有E1=2Blv1①设线框总电阻为R,此时线框中电流为I1,由闭合电路欧姆定律,有I1=②\n设此时线框所受安培力为F1,有F1=2I1lB③由于线框做匀速运动,其受力平衡,有mg=F1④由①②③④式得v1=⑤设ab边离开磁场之前,线框做匀速运动的速度为v2,同理可得v2=⑥由⑤⑥式得v2=4v1⑦(2)线框自释放直到cd边进入磁场前,由机械能守恒定律,有2mgl=mv⑧线框完全穿过磁场的过程中,由能量守恒定律,有mg(2l+H)=mv-mv+Q⑨由⑦⑧⑨式得H=+28l⑩答案 (1)4倍 (2)+28l9.(2015·四川理综,11,19分)(难度★★★★★)如图所示,金属导轨MNC和PQD,MN与PQ平行且间距为L,所在平面与水平面夹角为α,N、Q连线与MN垂直,M、P间接有阻值为R的电阻;光滑直导轨NC和QD在同一水平面内,与NQ的夹角都为锐角θ.均匀金属棒ab和ef质量均为m,长均为L,ab棒初始位置在水平导轨上与NQ重合;ef棒垂直放在倾斜导轨上,与导轨间的动摩擦因数为μ(μ较小),由导轨上的小立柱1和2阻挡而静止.空间有方向竖直的匀强磁场(图中未画出).两金属棒与导轨保持良好接触.不计所有导轨和ab棒的电阻,ef棒的阻值为R,最大静摩擦力与滑动摩擦力大小相等,忽略感应电流产生的磁场,重力加速度为g.\n(1)若磁感应强度大小为B,给ab棒一个垂直于NQ、水平向右的速度v1,在水平导轨上沿运动方向滑行一段距离后停止,ef棒始终静止,求此过程ef棒上产生的热量;(2)在(1)问过程中,ab棒滑行距离为d,求通过ab棒某横截面的电量;(3)若ab棒以垂直于NQ的速度v2在水平导轨上向右匀速运动,并在NQ位置时取走小立柱1和2,且运动过程中ef棒始终静止.求此状态下最强磁场的磁感应强度及此磁场下ab棒运动的最大距离.解析 (1)设ab棒的初动能为E1,ef棒和电阻R在此过程产生的热量分别为W和W1,有W+W1=Ek①且W=W1②由题有Ek=mv③得W=mv④(2)设在题设过程中,ab棒滑行时间为Δt,扫过的导轨间的面积为ΔS,通过ΔS的磁通量为ΔΦ,ab棒产生的电动势为E,ab棒中的电流为I,通过ab棒某横截面的电量为q,则E=⑤且ΔΦ=BΔS⑥I=⑦又有I=⑧由图所示ΔS=d(L-dcotθ)⑨\n联立⑤~⑨,解得q=⑩(3)ab棒滑行距离为x时,ab棒在导轨间的棒长为Lx为Lx=L-2xcotθ⑪此时,ab棒产生电动势Ex为Ex=Bv2Lx⑫流过ef棒的电流Ix为Ix=⑬ef棒所受安培力Fx为Fx=BIxL⑭联立⑪~⑭,解得Fx=(L-2xcotθ)⑮由⑮式可得,Fx在x=0和B为最大值Bm时有最大值F1.由题知,ab棒所受安培力方向必水平向左,ef棒所受安培力方向必水平向右,使F1为最大值的受力分析如图所示,图中fm为最大静摩擦力,有F1cosα=mgsinα+μ(mgcosα+F1sinα)⑯联立⑮⑯,得Bm=⑰⑰式就是题目所求最强磁场的磁感应强度大小,该磁场方向可竖直向上,也\n可竖直向下.由⑮式可知,B为Bm时,Fx随x增大而减小,x为最大xm时,Fx为最小值F2,如图可知F2cosα+μ(mgcosα+F2sinα)=mgsinα⑱联立⑮⑰⑱得xm=⑲答案 (1)mv (2)(3)10.(2014·天津理综,11,18分)(难度★★★★)如图所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L=0.4m.导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B=0.5T.在区域Ⅰ中,将质量m1=0.1kg,电阻R1=0.1Ω的金属条ab放在导轨上,ab刚好不下滑.然后,在区域Ⅱ中将质量m2=0.4kg,电阻R2=0.1Ω的光滑导体棒cd置于导轨上,由静止开始下滑.cd在滑动过程中始终处于区域Ⅱ的磁场中,ab、cd始终与导轨垂直且两端与导轨保持良好接触,取g=10m/s2.问(1)cd下滑的过程中,ab中的电流方向;(2)ab刚要向上滑动时,cd的速度v多大;(3)从cd开始下滑到ab刚要向上滑动的过程中,cd滑动的距离x=3.8m,此过程中ab上产生的热量Q是多少.解析 (1)由右手定则可知此时ab中电流方向由a流向b.(2)开始放置ab刚好不下滑时,ab所受摩擦力为最大静摩擦力,设其为\nFmax,有Fmax=m1gsinθ①设ab刚好要上滑时,cd棒的感应电动势为E,由法拉第电磁感应定律有E=BLv②设电路中的感应电流为I,由闭合电路欧姆定律有I=③设ab所受安培力为F安,有F安=ILB④此时ab受到的最大静摩擦力方向沿斜面向下,由平衡条件有F安=m1gsinθ+Fmax⑤综合①②③④⑤式,代入数据解得v=5m/s⑥(3)设cd棒的运动过程中电路中产生的总热量为Q总,由能量守恒有m2gxsinθ=Q总+m2v2⑦又Q=Q总⑧解得Q=1.3J⑨答案 (1)由a流向b (2)5m/s (3)1.3J11.(2014·江苏单科,13,15分)(难度★★★★)如图所示,在匀强磁场中有一倾斜的平行金属导轨,导轨间距为L,长为3d,导轨平面与水平面的夹角为θ,在导轨的中部刷有一段长为d的薄绝缘涂层.匀强磁场的磁感应强度大小为B,方向与导轨平面垂直.质量为m的导体棒从导轨的顶端由静止释放,在滑上涂层之前已经做匀速运动,并一直匀速滑到导轨底端.导体棒始终与导轨垂直,且仅与涂层间有摩擦,接在两导轨间的电阻为R,其他部分的电阻均不计,重力加速度为g.求:\n(1)导体棒与涂层间的动摩擦因数μ;(2)导体棒匀速运动的速度大小v;(3)整个运动过程中,电阻产生的焦耳热Q.解析 (1)在绝缘涂层上受力平衡mgsinθ=μmgcosθ解得μ=tanθ.(2)在光滑导轨上感应电动势E=BLv感应电流I=安培力F安=BIL受力平衡F安=mgsinθ解得v=.(3)摩擦生热Q摩=μmgdcosθ由能量守恒定律得3mgdsinθ=Q+Q摩+mv2解得Q=2mgdsinθ-.答案 (1)tanθ (2) (3)2mgdsinθ-

相关文档