• 23.38 KB
  • 2022-07-25 发布

2019高中物理竞赛预赛试题分类汇编—力学

  • 18页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中物理竞赛预赛试题分类汇编—力学  B与P碰撞后的瞬间,A、B、C三者的速度分别为vA、vB和vC,则仍类似于第2问解答中  的道理,有  vBvC  vCvB  vAvA    、式可知B与P刚碰撞后,物块  vCA与B的速度相等,都小于木板C的速度,即  vAvB    在以后的运动过程中,木板C以较大的加速度向右做减速运动,而物块向右做加速运动,加速度的大小分别为  aC加速过程将持续到或者  A和B以相同的较小的加速度  2g  aAaBg    1A和B与C的速度相同,三者以相同速度v0向右做匀速运动,或者木块A从  3木板C上掉了下来。因此物块B与A在木板C上不可能再发生碰撞。  4.若A恰好没从木板C上掉下来,即A到达C的左端时的速度变为与C相同,这时三者的速度  皆相同,以v3表示,动量守恒有  3mv3从  mv0  \n  A以初速度v0在木板C的左端开始运动,经过B与P相碰,直到A刚没从木板C的左端掉下来。  A相对C的路程为L;接着B相对C运动的路程也是L;B与P碰  后直到A刚没从木板C上掉下来,A与B相对C运动的路程也皆为L.整个系统动能的改变应等于  这一整个过程中,系统内部先是  内部相互间的滑动摩擦力做功的代数和,即    1122(3m)v3mv0mg4L  22、两式,得  v012gL  即当物块  A的初速度v012gL时,A刚好不会从木板C上掉下.若v012gL,则A将从  A从C上掉下的条件是  木板C上掉下,故  v012gL    5.若物块  A的初速度v0满足条件式,则A将从木板C上掉下来,设A刚要从木板C上掉  下来时。  A、B、C三者的速度分别为vA、vB和vC,则有  vBvC    vA这时式应改写为  mv0式应改写为\n  2mvAmvC    6  1112(2m)vB2mvC2mv0mg4L  222当物块A从木板C上掉下来后,若物块B刚好不会从木板C上掉下,即当C的左端赶上B时,B与  C的速度相等.设此速度为v4,则对B、C这一系统来说,动量守恒定律,有  mvBmvC2mv4    在此过程中,对这一系统来说,滑动摩擦力做功的代数和为mgL,动能定理可得    1112(2m)v4mvB2mvC2mgL  222、、、式可得  v04即当v04gL    gL时,物块B刚好不能从木板C上掉下。若,则B将从木板C上掉下,故物块B从  木板C上掉下来的条件是  v04  第18届预赛题\n  1.如图预18-5所示,一质量为M、长为L带薄挡板P的木板,静止在水平的地面上,设木板与地面间的静摩擦系数与滑动摩擦系数相等,皆为.质量为m的人从木板的一端静止开始相对于地面匀加速地向前走向另一端,到达另一端时便骤然抓住挡板P而停在木板上.已知人与木板间的静摩擦系数足够大,人在木板上不滑动.问:在什么条件下,最后可使木板向前方移动的距离达到最大?其值等于多少?参考解答  在人从木板的一端向另一端运动的过程中,先讨论木板发生向后运动的情形,以t表示人开始运动到刚抵达另一端尚未停下这段过程中所用的时间,设以x1表示木板向后移动的距离,如图预解18-5所示.以  gL    f表示人与木板间的静摩擦力,以F表示地面作用于木板的摩擦力,以a1和a2分别表示人和  木板的加速度,则  fm1a    1Lx1a1t2    2fFMa2    1x1a2t2    2解以上四式,得  t  2LMm    Mfm(fF)7  对人和木板组成的系统,人在木板另一端骤然停下后,两者的总动量等于从开始到此时地面的摩擦力F的冲量,忽略人骤然停下那段极短的时间,则有  Ft(Mm)v  \n  v为人在木板另一端刚停下时两者一起运动的速度.设人在木板另一端停下后两者一起向前移动的距离  为x2,地面的滑动摩擦系数为,则有    1(Mm)v2(Mm)gx2  2Xx2x1    木板向前移动的净距离为  以上各式得  1FLMmLm(fF)  XgMfm(fF)Mm(Mm)(fF)MF此式可知,欲使木板向前移动的距离  即    2X为最大,应有  fF  fFmax(Mm)g    即木板向前移动的距离为最大的条件是:人作用于木板的静摩擦力等于地面作用于木板的滑动摩擦力.  移动的最大距离  mL    Mm上可见,在设木板发生向后运动,即fF的情况下,fF时,X有极大值,也就是说,在时间  Xmax0~t内,木板刚刚不动的条件下  再来讨论木板不动即  X有极大值.  Xmax。\n  fF的情况,那时,因为fF,所以人积累的动能和碰后的总动能都将  变小,从而前进的距离x也变小,即小于上述的  2.在用铀235作燃料的核反应堆中,铀235核吸收一个动能约为的热中子后,可发生裂变反应,放出能量和2~3个快中子,而快中子不利于铀235的裂变.为了能使裂变反应继续下去,需要将反应中放出的快中子减速。有一种减速的方法是使用石墨作减速剂.设中子与碳原子的碰撞是对心弹性碰撞,问一个动能为E0撞多少次,才能减速成为的热中子?参考解答  设中子和碳核的质量分别为m和M,碰撞前中子的速度为v0,碰撞后中子和碳核的速度分别为v和v,因为碰撞是弹性碰撞,所以在碰撞前后,动量和机械能均守恒,又因v0、v和v沿同一直线,故有  解上两式得  的快中子需要与静止的碳原子碰  mv0mvMv    12121mv0mvMv2  222  8  因MvmMv0    mM12m  代入式得  \n  v11v0  13负号表示v的方向与v0方向相反,即与碳核碰撞后中子被反弹.因此,经过一次碰撞后中子的能量为  121112  E1mvmv0  2213于是  211  E1E0    13经过2,3,…,n次碰撞后,中子的能量依次为E2,E3,E4,…,En,有  21111  E2E1E0  131311  E3E0  13  ……  624E111E  En013E0因此    n2nE0    n1lg(En/E0)    2lg(11/13)已知    -710107代入式即得  1lg(10-7)754  n11213故初能量E0  第19届预赛  今年3月我国北方地区遭遇了近10年来最严重的沙尘暴天气.现把沙尘上扬后的情况简化为如下情景:v为竖直向上的风速,沙尘颗粒被扬起后悬浮在空中.这时风对沙尘的作用力相当于空气不动而沙尘以速度v竖直向下运动时所受的阻力.此阻力可用下式表达  的快中子经过近54次碰撞后,才成为能量为\neV的热中子。  9  fAv2  其中为一系数。  A为沙尘颗粒的截面积,为空气密度.  若沙粒的密度处空气密度0S103kgm-3,沙尘颗粒为球形,半径r10-4m,地球表面  m-3,,试估算在地面附近,上述v的最小值v1.  假定空气密度随高度h的变化关系为一常量,C0(1Ch),其中0为h0处的空气密度,C为  参考解答  在地面附近,沙尘扬起要能悬浮在空中,则空气阻力至少应与重力平衡,即    20Av1mg  ①  式中m为沙尘颗粒的质量,而  Ar2  ②  4mr3s  ③  3得  v14sgr  ④  30s-1  ⑤  时扬沙到达的最高处的空气密度和高度,则有  代入数据得  v1用h、h分别表示vs-1h0(1Ch)  ⑥\n  此时式①应为  hAv2mg  ⑦  ②、③、⑥、⑦可解得  h代入数据得  4rsg11  ⑧C3v20h103m  ⑨  10  全国中学生高中物理竞赛预赛试题分类汇编  力学  第16届预赛题.  1.一质量为M的平顶小车,以速度v0沿水平的光滑轨道作匀速直线运动。现将一质量为m的小物块无初速地放置在车顶前缘。已知物块和车顶之间的动摩擦系数为。  1.若要求物块不会从车顶后缘掉下,则该车顶最少要多长?2.若车顶长度符合1问中的要求,整个过程中摩擦力共做了多少功?参考解答  1.物块放到小车上以后,于摩擦力的作用,当以地面为参考系时,物块将从静止开始加速运动,而小车将做减速运动,若物块到达小车顶后缘时的速度恰好等于小车此时的速度,则物块就刚好不脱落。令v表示此时的速度,在这个过程中,若以物块和小车为系统,因为水平方向未受外力,所以此方向上动量守恒,即  Mv0(mM)v  \n  从能量来看,在上述过程中,物块动能的增量等于摩擦力对物块所做的功,即    12mvmgs1  2其中s1为物块移动的距离。小车动能的增量等于摩擦力对小车所做的功,即    112Mv2mv0mgs2  22其中s2为小车移动的距离。用l表示车顶的最小长度,则    ls2s1    以上四式,可解得  2Mv0  l    2g(mM)2Mv0即车顶的长度至少应为l。  2g(mM)2.功能关系可知,摩擦力所做的功等于系统动量的增量,即  W112  (mM)v2Mv022、式可得  2mMv0  W    2(mM)  2.一个大容器中装有互不相溶的两种液体,它们的密度分别为1和2。现让一长为L、密度为  1(12)的均匀木棍,竖直地放在上面的液体内,其下端离两液体分界面的距离为2  1\n  3L,静止开始下落。试计算木棍到达最低处所需的时间。假定于木棍运动而产生的液体阻力可以4忽略不计,且两液体都足够深,保证木棍始终都在液体内部运动,未露出液面,也未与容器相碰。参考解答  1.用S表示木棍的横截面积,从静止开始到其下端到达两液体交界面为止,在这过程中,木棍受向下的重力  1(12)LSg和向上的浮力1LSg。牛顿第二定律可知,其下落的加速度2  a121g    12用t1表示所需的时间,则  31La1t12  42此解得  t13L(12)    2(21)g2.木棍下端开始进入下面液体后,用L'表示木棍在上面液体中的长度,这时木棍所受重力不变,仍为  1但浮力变为1LSg2(LL)Sg.当LL'时,浮力小于重力;当L'0(12)LSg。  2时,浮力大于重力,可见有一个合力为零的平衡位置.用L0表示在此平衡位置时,木棍在上面液体中的长度,则此时有  此可得  1(12)LSg1L0Sg2(LL0)Sg  2L0L  2即木棍的中点处于两液体交界处时,木棍处于平衡状态,取一坐标系,其原点位于交界面上,竖直方向为z轴,向上为正,则当木棍中点的坐标z为  0时,木棍所受合力为零.当中点坐标为z时,所受合力\n  111(12)LSg1LzSg2LzSg(21)Sgzkz222式中  k(21)Sg    这时木棍的运动方程为  kz1(12)LSaz2(21)gz2z  (12)Laz为沿z方向加速度  az2  2  22(21)g    (12)L22(12)L    2(21)g此可知为简谐振动,其周期T为了求同时在两种液体中运动的时间,先求振动的振幅  A.木棍下端刚进入下面液体时,其速度  va1t1  机械能守恒可知    1121212SL12v2kz2kA  22式中z1L为此时木棍中心距坐标原点的距离,、、式可求得v,再将v和2式中的k代人式得  AL  此可知,从木棍下端开始进入下面液体到棍中心到达坐标原点所走的距离是振幅的一半,从参考圆上可知,对应的为30,对应的时间为T/12。因此木棍从下端开始进入下面液体到上端进入下面液体所用的时间,即棍中心从z用的时间为  t2LL到z所222T123(12)L  \n  2(21)g3.从木棍全部浸入下面液体开始,受力情况的分析和1中类似。  只是浮力大于重力,所以做匀减速运动,加速度的数值与a1一样,其过程和1中情况相反地对称,所用时间  t34.总时间为  t  第17届预赛题.  1.如图预17-8所示,在水平桌面上放有长木板C,C上右端是固定挡板P,在C上左端和  t1    t1t2t36626(12)L    (21)gA和B,A、B的尺寸以及P的厚度皆可忽略不计,A、B之间和B、P之间  的距离皆为L。设木板C与桌面之间无摩擦,A、C之间和B、C之间的静摩擦因数及滑动摩擦因数均为;A、B、C的质量相同.开始时,B和C静止,A以某一初速度向右运  中点处各放有小物块  动.试问下列情况是否能发生?要求定量求出能发生这些情况时物块定量说明不能发生的理.  物块  A的初速度v0应满足的条件,或  A与B发生碰撞;  3  物块物块参考解答\n  1.以m表示物块  当物块A以初速v0向右运动时,物块A受到木板C施A、B和木板C的质量。  A与B发生碰撞后,物块B与挡板P发生碰撞;  A在木板C上再发生碰撞;  物块B与挡板P发生碰撞后,物块B与  A从木板C上掉下来;  物块B从木板C上掉下来.  加的大小为mg的滑动摩擦力而减速,木板C则受到物块  A施加的大小为mg的滑动摩擦力和物块  物块则因受木板C施加的摩擦力f作用而加速,设A、B、B施加的大小为f的摩擦力而做加速运动。  C三者的加速度分别为aA、aB和aC,则牛顿第二定律,有  mgmaAfmaC  mg  fmaB事实上在此题中,aB    aC,即B、C之间无相对运动,这是因为当aBaC时,上式可得  1fmg    2它小于最大静摩擦力mg.可见静摩擦力使物块B、木板C之间不发生相对运动。若物块A刚好与\n  物块B不发生碰撞,则物块  因为物块B与木板CA运动到物块B所在处时,A与B的速度大小相等.  的速度相等,所以此时三者的速度均相同,设为v1,动量守恒定律得  mv03mv1    在此过程中,设木板C运动的路程为s1,则物块  A运  动的路程为s1L,如图预解17-8所示.动能定理有  1212mv1mv0mg(s1L)  2212(2m)v1mgs1  2或者说,在此过程中整个系统动能的改变等于系统内部相互间的滑动摩擦力做功的代数和与式等号两边相加),即  1122(3m)v1mv0mgL  22式中L就是物块A相对木板C运动的路程.解、式,得  v0即物块撞,故  3gL    A的初速度v03gL时,A刚好不与B发生碰撞,若v03gL,则A将与B发生碰A与B发生碰撞的条件是  4  v02.当物块  3gL    A的初速度v0满足式时,A与B将发生碰撞,设碰撞的瞬间,A、B、C三者\n  的速度分别为vA、vB和vC,则有  vA在物块  vB  vBvC    A、B发生碰撞的极短时间内,木板C对它们的摩擦力的冲量非常小,可忽略不计。故在碰撞  过程中,A与B构成的系统的动量守恒,而木板C的速度保持不变.因为物块A、B间的碰撞是弹性  的,系统的机械能守恒,又因为质量相等,动量守恒和机械能守恒可以证明,碰撞前后  A、B交换速度,若碰撞刚结束时,A、B、C三者的速度分别为vA、vB和vC,则有  vAvB  vBvA  vCvC  A与木板C速度相等,保持相对静止,而B相对于A、C向右运动,以  后发生的过程相当于第1问中所进行的延续,物块B替换A继续向右运动。  、式可知,物块  若物块B刚好与挡板P不发生碰撞,则物块B以速度vB从板C板的中点运动到挡板P所在处时,B与C的速度相等.因  A与C的速度大小是相等的,故A、B、C三者的速度相等,设此时三\n  者的速度为v2.根据动量守恒定律有  mv03mv2    接着与B发生完全弹性碰撞,碰撞后物块A相对木板C静止,B到达PA以初速度v0开始运动,所在处这一整个过程中,先是即  A相对C运动的路程为L,接着是B相对C运动的路程为L,整个系统  动能的改变,类似于上面第1问解答中式的说法.等于系统内部相互问的滑动摩擦力做功的代数和。  1122(3m)v2mv0mg2L  226gL    解、两式得  v0即物块  A的初速度v06gL时,A与B碰撞,但B与P刚好不发生碰撞,若v06gL,就A与B碰撞后,物块B与挡板P发生碰撞的条件是  能使B与P发生碰撞,故  v03.若物块  6gL    A的初速度v0满足条件式,则在A、B发生碰撞后,B将与挡板P发生碰撞,A、B、C三者的速度分别为vA、vB和vC,则有  vAvC    设在碰撞前瞬间。  vB\n  5  

相关文档