• 3.68 MB
  • 2022-07-26 发布

高中-数学竞赛--讲义(免费)

  • 91页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
~高中数学竞赛资料一、高中数学竞赛大纲      全国高中数学联赛      全国高中数学联赛(一试)所涉及的知识范围不超出教育部2000年《全日制普通高级中学数学教学大纲》中所规定的教学要求和内容,但在方法的要求上有所提高。      全国高中数学联赛加试      全国高中数学联赛加试(二试)与国际数学奥林匹克接轨,在知识方面有所扩展;适当增加一些教学大纲之外的内容,所增加的内容是:1.平面几何几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。三角形中的几个特殊点:旁心、费马点,欧拉线。几何不等式。几何极值问题。几何中的变换:对称、平移、旋转。圆的幂和根轴。面积方法,复数方法,向量方法,解析几何方法。2.代数周期函数,带绝对值的函数。三角公式,三角恒等式,三角方程,三角不等式,反三角函数。递归,递归数列及其性质,一阶、二阶线性常系数递归数列的通项公式。第二数学归纳法。平均值不等式,柯西不等式,排序不等式,切比雪夫不等式,一元凸函数。复数及其指数形式、三角形式,欧拉公式,棣莫弗定理,单位根。多项式的除法定理、因式分解定理,多项式的相等,整系数多项式的有理根*,多项式的插值公式*。n次多项式根的个数,根与系数的关系,实系数多项式虚根成对定理。函数迭代,简单的函数方程*3. 初等数论同余,欧几里得除法,裴蜀定理,完全剩余类,二次剩余,不定方程和方程组,高斯函数[x],费马小定理,格点及其性质,无穷递降法,欧拉定理*,孙子定理*。4.组合问题圆排列,有重复元素的排列与组合,组合恒等式。组合计数,组合几何。抽屉原理。容斥原理。极端原理。图论问题。集合的划分。覆盖。平面凸集、凸包及应用*。注:有*号的内容加试中暂不考,但在冬令营中可能考。三、高中数学竞赛基础知识第一章集合与简易逻辑一、基础知识定义1一般地,一组确定的、互异的、无序的对象的全体构成集合,简称集,用大写字母来表示;集合中的各个对象称为元素,用小写字母来表示,元素在集合A中,称属于A,记为,否则称不属于A,记作。例如,通常用N,Z,Q,B,Q+分别表示自然数集、整数集、有理数集、实数集、正有理数集,不含任何元素的集合称为空集,用来表示。集合分有限集和无限集两种。集合的表示方法有列举法:将集合中的元素一一列举出来写在大括号内并用逗号隔开表示集合的方法,如{1,2,3};描述法:将集合中的元素的属性写在大括号内表示集合的方法。例如{有理数},分别表示有理数集和正实数集。定义2子集:对于两个集合A与B,如果集合A中的任何一个元素都是集合B中的元素,则A叫做B的子集,记为,例如。规定空集是任何集合的子集,如果A是B的子集,B也是A的子集,则称A与B相等。如果A是B的子集,而且B中存在元素不属于A,则A叫B的真子集。~~~\n~定义3交集,定义4并集,定义5补集,若称为A在I中的补集。定义6差集,。定义7集合记作开区间,集合记作闭区间,R记作定理1集合的性质:对任意集合A,B,C,有:(1)(2);(3)(4)【证明】这里仅证(1)、(3),其余由读者自己完成。(1)若,则,且或,所以或,即;反之,,则或,即且或,即且,即(3)若,则或,所以或,所以,又,所以,即,反之也有定理2加法原理:做一件事有类办法,第一类办法中有种不同的方法,第二类办法中有种不同的方法,…,第类办法中有种不同的方法,那么完成这件事一共有种不同的方法。定理3乘法原理:做一件事分个步骤,第一步有种不同的方法,第二步有种不同的方法,…,第步有种不同的方法,那么完成这件事一共有种不同的方法。二、方法与例题1.利用集合中元素的属性,检验元素是否属于集合。例1设,求证:~~~\n~(1);(2);(3)若,则[证明](1)因为,且,所以(2)假设,则存在,使,由于和有相同的奇偶性,所以是奇数或4的倍数,不可能等于,假设不成立,所以(3)设,则(因为)。2.利用子集的定义证明集合相等,先证,再证,则A=B。例2设A,B是两个集合,又设集合M满足,求集合M(用A,B表示)。【解】先证,若,因为,所以,所以;再证,若,则1)若,则;2)若,则。所以综上,3.分类讨论思想的应用。例3,若,求【解】依题设,,再由解得或,因为,所以,所以,所以或2,所以或3。因为,所以,若,则,即,若,则或,解得综上所述,或;或。~~~\n~4.计数原理的应用。例4集合A,B,C是I={1,2,3,4,5,6,7,8,9,0}的子集,(1)若,求有序集合对(A,B)的个数;(2)求I的非空真子集的个数。【解】(1)集合I可划分为三个不相交的子集;A\B,B\A,中的每个元素恰属于其中一个子集,10个元素共有310种可能,每一种可能确定一个满足条件的集合对,所以集合对有310个。(2)I的子集分三类:空集,非空真子集,集合I本身,确定一个子集分十步,第一步,1或者属于该子集或者不属于,有两种;第二步,2也有两种,…,第10步,0也有两种,由乘法原理,子集共有个,非空真子集有1022个。5.配对方法。例5给定集合的个子集:,满足任何两个子集的交集非空,并且再添加I的任何一个其他子集后将不再具有该性质,求的值。【解】将I的子集作如下配对:每个子集和它的补集为一对,共得对,每一对不能同在这个子集中,因此,;其次,每一对中必有一个在这个子集中出现,否则,若有一对子集未出现,设为C1A与A,并设,则,从而可以在个子集中再添加,与已知矛盾,所以。综上,。6.竞赛常用方法与例问题。定理4容斥原理;用表示集合A的元素个数,则,需要xy此结论可以推广到个集合的情况,即定义8集合的划分:若,且,则这些子集的全集叫I的一个-划分。定理5最小数原理:自然数集的任何非空子集必有最小数。定理6抽屉原理:将个元素放入个抽屉,必有一个抽屉放有不少于个元素,也必有一个抽屉放有不多于个元素;将无穷多个元素放入个抽屉必有一个抽屉放有无穷多个元素。例6求1,2,3,…,100中不能被2,3,5整除的数的个数。【解】记,~~~\n~,由容斥原理,,所以不能被2,3,5整除的数有个。例7S是集合{1,2,…,2004}的子集,S中的任意两个数的差不等于4或7,问S中最多含有多少个元素?【解】将任意连续的11个整数排成一圈如右图所示。由题目条件可知每相邻两个数至多有一个属于S,将这11个数按连续两个为一组,分成6组,其中一组只有一个数,若S含有这11个数中至少6个,则必有两个数在同一组,与已知矛盾,所以S至多含有其中5个数。又因为2004=182×11+2,所以S一共至多含有182×5+2=912个元素,另一方面,当时,恰有,且S满足题目条件,所以最少含有912个元素。例8求所有自然数,使得存在实数满足:【解】当时,;当时,;当时,。下证当时,不存在满足条件。令,则所以必存在某两个下标,使得,所以或,即,所以或,。(ⅰ)若,考虑,有或,即,设,则,导致矛盾,故只有考虑,有或,即,设,则,推出矛盾,设,则,又推出矛盾,所以故当时,不存在满足条件的实数。~~~\n~(ⅱ)若,考虑,有或,即,这时,推出矛盾,故。考虑,有或,即=3,于是,矛盾。因此,所以,这又矛盾,所以只有,所以。故当时,不存在满足条件的实数。例9设A={1,2,3,4,5,6},B={7,8,9,……,n},在A中取三个数,B中取两个数组成五个元素的集合,求的最小值。【解】设B中每个数在所有中最多重复出现次,则必有。若不然,数出现次(),则在出现的所有中,至少有一个A中的数出现3次,不妨设它是1,就有集合{1,},其中,为满足题意的集合。必各不相同,但只能是2,3,4,5,6这5个数,这不可能,所以20个中,B中的数有40个,因此至少是10个不同的,所以。当时,如下20个集合满足要求:{1,2,3,7,8},{1,2,4,12,14},{1,2,5,15,16},{1,2,6,9,10},{1,3,4,10,11},{1,3,5,13,14},{1,3,6,12,15},{1,4,5,7,9},{1,4,6,13,16},{1,5,6,8,11},{2,3,4,13,15},{2,3,5,9,11},{2,3,6,14,16},{2,4,5,8,10},{2,4,6,7,11},{2,5,6,12,13},{3,4,5,12,16},{3,4,6,8,9},{3,5,6,7,10},{4,5,6,14,15}。例10集合{1,2,…,3n}可以划分成个互不相交的三元集合,其中,求满足条件的最小正整数【解】设其中第个三元集为则1+2+…+所以。当为偶数时,有,所以,当为奇数时,有,所以,当时,集合{1,11,4},{2,13,5},{3,15,6},{9,12,7},{10,14,8}满足条件,所以的最小值为5。第二章二次函数与命题~~~\n~一、基础知识1.二次函数:当0时,y=ax2+bx+c或f(x)=ax2+bx+c称为关于x的二次函数,其对称轴为直线x=-,另外配方可得f(x)=a(x-x0)2+f(x0),其中x0=-,下同。2.二次函数的性质:当a>0时,f(x)的图象开口向上,在区间(-∞,x0]上随自变量x增大函数值减小(简称递减),在[x0,-∞)上随自变量增大函数值增大(简称递增)。当a<0时,情况相反。3.当a>0时,方程f(x)=0即ax2+bx+c=0…①和不等式ax2+bx+c>0…②及ax2+bx+c<0…③与函数f(x)的关系如下(记△=b2-4ac)。1)当△>0时,方程①有两个不等实根,设x1,x2(x1x2}和{x|x10,当x=x0时,f(x)取最小值f(x0)=,若a<0,则当x=x0=时,f(x)取最大值f(x0)=.对于给定区间[m,n]上的二次函数f(x)=ax2+bx+c(a>0),当x0∈[m,n]时,f(x)在[m,n]上的最小值为f(x0);当x0n时,f(x)在[m,n]上的最小值为f(n)(以上结论由二次函数图象即可得出)。定义1能判断真假的语句叫命题,如“3>5”是命题,“萝卜好大”不是命题。不含逻辑联结词“或”、“且”、“非”的命题叫做简单命题,由简单命题与逻辑联结词构成的命题由复合命题。注1“p或q”复合命题只有当p,q同为假命题时为假,否则为真命题;“p且q”复合命题只有当p,q同时为真命题时为真,否则为假命题;p与“非p”即“p”恰好一真一假。定义2原命题:若p则q(p为条件,q为结论);逆命题:若q则p;否命题:若非p则q;逆否命题:若非q则非p。注2原命题与其逆否命题同真假。一个命题的逆命题和否命题同真假。注3反证法的理论依据是矛盾的排中律,而未必是证明原命题的逆否命题。定义3如果命题“若p则q”为真,则记为pq否则记作pq.在命题“若p则q”中,如果已知pq,则p是q的充分条件;如果qp,则称p是q的必要条件;如果pq但q不p,则称p是q的充分非必要条件;如果p不q但pq,则p称为q的必要非充分条件;若pq且qp,则p是q的充要条件。二、方法与例题1.待定系数法。例1设方程x2-x+1=0的两根是α,β,求满足f(α)=β,f(β)=α,f(1)=1的二次函数f(x).【解】设f(x)=ax2+bx+c(a0),~~~\n~则由已知f(α)=β,f(β)=α相减并整理得(α-β)[(α+β)a+b+1]=0,因为方程x2-x+1=0中△0,所以αβ,所以(α+β)a+b+1=0.又α+β=1,所以a+b+1=0.又因为f(1)=a+b+c=1,所以c-1=1,所以c=2.又b=-(a+1),所以f(x)=ax2-(a+1)x+2.再由f(α)=β得aα2-(a+1)α+2=β,所以aα2-aα+2=α+β=1,所以aα2-aα+1=0.即a(α2-α+1)+1-a=0,即1-a=0,所以a=1,所以f(x)=x2-2x+2.2.方程的思想。例2已知f(x)=ax2-c满足-4≤f(1)≤-1,-1≤f(2)≤5,求f(3)的取值范围。【解】因为-4≤f(1)=a-c≤-1,所以1≤-f(1)=c-a≤4.又-1≤f(2)=4a-c≤5,f(3)=f(2)-f(1),所以×(-1)+≤f(3)≤×5+×4,所以-1≤f(3)≤20.3.利用二次函数的性质。例3已知二次函数f(x)=ax2+bx+c(a,b,c∈R,a0),若方程f(x)=x无实根,求证:方程f(f(x))=x也无实根。【证明】若a>0,因为f(x)=x无实根,所以二次函数g(x)=f(x)-x图象与x轴无公共点且开口向上,所以对任意的x∈R,f(x)-x>0即f(x)>x,从而f(f(x))>f(x)。所以f(f(x))>x,所以方程f(f(x))=x无实根。注:请读者思考例3的逆命题是否正确。4.利用二次函数表达式解题。例4设二次函数f(x)=ax2+bx+c(a>0),方程f(x)=x的两根x1,x2满足00,所以f(x)>x.其次f(x)-x1=(x-x1)[a(x-x2)+1]=a(x-x1)[x-x2+]<0,所以f(x)1,求证:方程的正根比1小,负根比-1大。【证明】方程化为2a2x2+2ax+1-a2=0.构造f(x)=2a2x2+2ax+1-a2,f(1)=(a+1)2>0,f(-1)=(a-1)2>0,f(0)=1-a2<0,即△>0,所以f(x)在区间(-1,0)和(0,1)上各有一根。即方程的正根比1小,负根比-1大。6.定义在区间上的二次函数的最值。例6当x取何值时,函数y=取最小值?求出这个最小值。【解】y=1-,令u,则0-(b+1),即b>-2时,x2+bx在[0,-(b+1)]上是减函数,所以x2+bx的最小值为b+1,b+1=-,b=-.综上,b=-.7.一元二次不等式问题的解法。例8已知不等式组①②的整数解恰好有两个,求a的取值范围。【解】因为方程x2-x+a-a2=0的两根为x1=a,x2=1-a,若a≤0,则x11-2a.~~~\n~因为1-2a≥1-a,所以a≤0,所以不等式组无解。若a>0,ⅰ)当0时,a>1-a,由②得x>1-2a,所以不等式组的解集为1-a1且a-(1-a)≤3,所以10,△=(B-A-C)2(y-z)2-4AC(y-z)2≤0恒成立,所以(B-A-C)2-4AC≤0,即A2+B2+C2≤2(AB+BC+CA)同理有B≥0,C≥0,所以必要性成立。再证充分性,若A≥0,B≥0,C≥0且A2+B2+C2≤2(AB+BC+CA),1)若A=0,则由B2+C2≤2BC得(B-C)2≤0,所以B=C,所以△=0,所以②成立,①成立。2)若A>0,则由③知△≤0,所以②成立,所以①成立。综上,充分性得证。9.常用结论。定理1若a,b∈R,|a|-|b|≤|a+b|≤|a|+|b|.【证明】因为-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|(注:若m>0,则-m≤x≤m等价于|x|≤m).又|a|=|a+b-b|≤|a+b|+|-b|,即|a|-|b|≤|a+b|.综上定理1得证。定理2若a,b∈R,则a2+b2≥2ab;若x,y∈R+,则x+y≥(证略)注定理2可以推广到n个正数的情况,在不等式证明一章中详细论证。第三章函数一、基础知识定义1映射,对于任意两个集合A,B,依对应法则f,若对A中的任意一个元素x,在B中都有唯一一个元素与之对应,则称f:A→B为一个映射。定义2单射,若f:A→B是一个映射且对任意x,y∈A,xy,都有f(x)f(y)则称之为单射。~~~\n~定义3满射,若f:A→B是映射且对任意y∈B,都有一个x∈A使得f(x)=y,则称f:A→B是A到B上的满射。定义4一一映射,若f:A→B既是单射又是满射,则叫做一一映射,只有一一映射存在逆映射,即从B到A由相反的对应法则f-1构成的映射,记作f-1:A→B。定义5函数,映射f:A→B中,若A,B都是非空数集,则这个映射为函数。A称为它的定义域,若x∈A,y∈B,且f(x)=y(即x对应B中的y),则y叫做x的象,x叫y的原象。集合{f(x)|x∈A}叫函数的值域。通常函数由解析式给出,此时函数定义域就是使解析式有意义的未知数的取值范围,如函数y=3-1的定义域为{x|x≥0,x∈R}.定义6反函数,若函数f:A→B(通常记作y=f(x))是一一映射,则它的逆映射f-1:A→B叫原函数的反函数,通常写作y=f-1(x).这里求反函数的过程是:在解析式y=f(x)中反解x得x=f-1(y),然后将x,y互换得y=f-1(x),最后指出反函数的定义域即原函数的值域。例如:函数y=的反函数是y=1-(x0).定理1互为反函数的两个函数的图象关于直线y=x对称。定理2在定义域上为增(减)函数的函数,其反函数必为增(减)函数。定义7函数的性质。(1)单调性:设函数f(x)在区间I上满足对任意的x1,x2∈I并且x1f(x2)),则称f(x)在区间I上是增(减)函数,区间I称为单调增(减)区间。(2)奇偶性:设函数y=f(x)的定义域为D,且D是关于原点对称的数集,若对于任意的x∈D,都有f(-x)=-f(x),则称f(x)是奇函数;若对任意的x∈D,都有f(-x)=f(x),则称f(x)是偶函数。奇函数的图象关于原点对称,偶函数的图象关于y轴对称。(3)周期性:对于函数f(x),如果存在一个不为零的常数T,使得当x取定义域内每一个数时,f(x+T)=f(x)总成立,则称f(x)为周期函数,T称为这个函数的周期,如果周期中存在最小的正数T0,则这个正数叫做函数f(x)的最小正周期。定义8如果实数aa}记作开区间(a,+∞),集合{x|x≤a}记作半开半闭区间(-∞,a].定义9函数的图象,点集{(x,y)|y=f(x),x∈D}称为函数y=f(x)的图象,其中D为f(x)的定义域。通过画图不难得出函数y=f(x)的图象与其他函数图象之间的关系(a,b>0);(1)向右平移a个单位得到y=f(x-a)的图象;(2)向左平移a个单位得到y=f(x+a)的图象;(3)向下平移b个单位得到y=f(x)-b的图象;(4)与函数y=f(-x)的图象关于y轴对称;(5)与函数y=-f(-x)的图象关于原点成中心对称;(6)与函数y=f-1(x)的图象关于直线y=x对称;(7)与函数y=-f(x)的图象关于x轴对称。定理3复合函数y=f[g(x)]的单调性,记住四个字:“同增异减”。例如y=,u=2-x在(-∞,2)上是减函数,y=在(0,+∞)上是减函数,所以y=在(-∞,2)上是增函数。注:复合函数单调性的判断方法为同增异减。这里不做严格论证,求导之后是显然的。二、方法与例题xyx11x1.数形结合法。例1求方程|x-1|=的正根的个数.~~~\n~【解】分别画出y=|x-1|和y=的图象,由图象可知两者有唯一交点,所以方程有一个正根。例2求函数f(x)=的最大值。【解】f(x)=,记点P(x,x2),A(3,2),B(0,1),则f(x)表示动点P到点A和B距离的差。因为|PA|-|PA|≤|AB|=,当且仅当P为AB延长线与抛物线y=x2的交点时等号成立。所以f(x)max=2.函数性质的应用。例3设x,y∈R,且满足,求x+y.【解】设f(t)=t3+1997t,先证f(t)在(-∞,+∞)上递增。事实上,若a0,所以f(t)递增。由题设f(x-1)=-1=f(1-y),所以x-1=1-y,所以x+y=2.例4奇函数f(x)在定义域(-1,1)内是减函数,又f(1-a)+f(1-a2)<0,求a的取值范围。【解】因为f(x) 是奇函数,所以f(1-a2)=-f(a2-1),由题设f(1-a)0,则由①得n<0,设f(t)=t(+1),则f(t)在(0,+∞)上是增函数。又~~~\n~f(m)=f(-n),所以m=-n,所以3x-1+2x-3=0,所以x=ⅱ)若m<0,且n>0。同理有m+n=0,x=,但与m<0矛盾。综上,方程有唯一实数解x=3.配方法。例7求函数y=x+的值域。【解】y=x+=[2x+1+2+1]-1=(+1)-1≥-1=-.当x=-时,y取最小值-,所以函数值域是[-,+∞)。4.换元法。例8求函数y=(++2)(+1),x∈[0,1]的值域。【解】令+=u,因为x∈[0,1],所以2≤u2=2+2≤4,所以≤u≤2,所以≤≤2,1≤≤2,所以y=,u2∈[+2,8]。所以该函数值域为[2+,8]。5.判别式法。例9求函数y=的值域。【解】由函数解析式得(y-1)x2+3(y+1)x+4y-4=0.①当y1时,①式是关于x的方程有实根。所以△=9(y+1)2-16(y-1)2≥0,解得≤y≤1.又当y=1时,存在x=0使解析式成立,所以函数值域为[,7]。6.关于反函数。例10若函数y=f(x)定义域、值域均为R,且存在反函数。若f(x)在(-∞,+∞)上递增,求证:y=f-1(x)在(-∞,+∞)上也是增函数。【证明】设x10,所以f(x)在(-∞,-)上递增,同理f(x)在[-,+∞)上递增。在方程f(x)=f-1(x)中,记f(x)=f-1(x)=y,则y≥0,又由f-1(x)=y得f(y)=x,所以x≥0,所以x,y∈[-,+∞).若xy,设xy也可得出矛盾。所以x=y.即f(x)=x,化简得3x5+2x4-4x-1=0,即(x-1)(3x4+5x3+5x2+5x+1)=0,因为x≥0,所以3x4+5x3+5x2+5x+1>0,所以x=1.第四章几个初等函数的性质一、基础知识1.指数函数及其性质:形如y=ax(a>0,a1)的函数叫做指数函数,其定义域为R,值域为(0,+∞),当01时,y=ax为增函数,它的图象恒过定点(0,1)。2.分数指数幂:。3.对数函数及其性质:形如y=logax(a>0,a1)的函数叫做对数函数,其定义域为(0,+∞),值域为R,图象过定点(1,0)。当01时,y=logax为增函数。4.对数的性质(M>0,N>0);1)ax=Mx=logaM(a>0,a1);2)loga(MN)=logaM+logaN;3)loga()=logaM-logaN;4)logaMn=nlogaM;,5)loga=logaM;6)alogaM=M;7)logab=(a,b,c>0,a,c1).5.函数y=x+(a>0)的单调递增区间是和,单调递减区间为和。(请读者自己用定义证明)6.连续函数的性质:若a0.~~~\n~【证明】设f(x)=(b+c)x+bc+1(x∈(-1,1)),则f(x)是关于x的一次函数。所以要证原不等式成立,只需证f(-1)>0且f(1)>0(因为-10,f(1)=b+c+bc+a=(1+b)(1+c)>0,所以f(a)>0,即ab+bc+ca+1>0.例2(柯西不等式)若a1,a2,…,an是不全为0的实数,b1,b2,…,bn∈R,则()·()≥()2,等号当且仅当存在R,使ai=,i=1,2,…,n时成立。【证明】令f(x)=()x2-2()x+=,因为>0,且对任意x∈R,f(x)≥0,所以△=4()-4()()≤0.展开得()()≥()2。等号成立等价于f(x)=0有实根,即存在,使ai=,i=1,2,…,n。例3设x,y∈R+,x+y=c,c为常数且c∈(0,2],求u=的最小值。【解】u==xy+≥xy++2·=xy++2.令xy=t,则00,所以=例5对于正整数a,b,c(a≤b≤c)和实数x,y,z,w,若ax=by=cz=70w,且,求证:a+b=c.【证明】由ax=by=cz=70w取常用对数得xlga=ylgb=zlgc=wlg70.所以lga=lg70,lgb=lg70,lgc=lg70,相加得(lga+lgb+lgc)=lg70,由题设,所以lga+lgb+lgc=lg70,所以lgabc=lg70.所以abc=70=2×5×7.若a=1,则因为xlga=wlg70,所以w=0与题设矛盾,所以a>1.又a≤b≤c,且a,b,c为70的正约数,所以只有a=2,b=5,c=7.所以a+b=c.例6已知x1,ac1,a1,c1.且logax+logcx=2logbx,求证c2=(ac)logab.【证明】由题设logax+logcx=2logbx,化为以a为底的对数,得,因为ac>0,ac1,所以logab=logacc2,所以c2=(ac)logab.注:指数与对数式互化,取对数,换元,换底公式往往是解题的桥梁。3.指数与对数方程的解法。解此类方程的主要思想是通过指对数的运算和换元等进行化简求解。值得注意的是函数单调性的应用和未知数范围的讨论。例7解方程:3x+4x+5x=6x.【解】方程可化为=1。设f(x)=,则f(x)在(-~~~\n~∞,+∞)上是减函数,因为f(3)=1,所以方程只有一个解x=3.例8解方程组:(其中x,y∈R+).【解】两边取对数,则原方程组可化为①②把①代入②得(x+y)2lgx=36lgx,所以[(x+y)2-36]lgx=0.由lgx=0得x=1,由(x+y)2-36=0(x,y∈R+)得x+y=6,代入①得lgx=2lgy,即x=y2,所以y2+y-6=0.又y>0,所以y=2,x=4.所以方程组的解为.例9已知a>0,a1,试求使方程loga(x-ak)=loga2(x2-a2)有解的k的取值范围。【解】由对数性质知,原方程的解x应满足.①②③若①、②同时成立,则③必成立,故只需解.由①可得2kx=a(1+k2),④当k=0时,④无解;当k0时,④的解是x=,代入②得>k.若k<0,则k2>1,所以k<-1;若k>0,则k2<1,所以01时,an=Sn-Sn-1.定义2等差数列,如果对任意的正整数n,都有an+1-an=d(常数),则{an}称为等差数列,d叫做公差。若三个数a,b,c成等差数列,即2b=a+c,则称b为a和c的等差中项,若公差为d,则a=b-d,c=b+d.定理2等差数列的性质:1)通项公式an=a1+(n-1)d;2)前n项和公式:Sn=;3)an-am=(n-m)d,其中n,m为正整数;4)若n+m=p+q,则an+am=ap+aq;5)对任意正整数p,q,恒有ap-aq=(p-q)(a2-a1);6)若A,B~~~\n~至少有一个不为零,则{an}是等差数列的充要条件是Sn=An2+Bn.定义3等比数列,若对任意的正整数n,都有,则{an}称为等比数列,q叫做公比。定理3等比数列的性质:1)an=a1qn-1;2)前n项和Sn,当q1时,Sn=;当q=1时,Sn=na1;3)如果a,b,c成等比数列,即b2=ac(b0),则b叫做a,c的等比中项;4)若m+n=p+q,则aman=apaq。定义4极限,给定数列{an}和实数A,若对任意的>0,存在M,对任意的n>M(n∈N),都有|an-A|<,则称A为n→+∞时数列{an}的极限,记作定义5无穷递缩等比数列,若等比数列{an}的公比q满足|q|<1,则称之为无穷递增等比数列,其前n项和Sn的极限(即其所有项的和)为(由极限的定义可得)。定理3第一数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)时n=k成立时能推出p(n)对n=k+1成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。竞赛常用定理定理4第二数学归纳法:给定命题p(n),若:(1)p(n0)成立;(2)当p(n)对一切n≤k的自然数n都成立时(k≥n0)可推出p(k+1)成立,则由(1),(2)可得命题p(n)对一切自然数n≥n0成立。定理5对于齐次二阶线性递归数列xn=axn-1+bxn-2,设它的特征方程x2=ax+b的两个根为α,β:(1)若αβ,则xn=c1an-1+c2βn-1,其中c1,c2由初始条件x1,x2的值确定;(2)若α=β,则xn=(c1n+c2)αn-1,其中c1,c2的值由x1,x2的值确定。二、方法与例题1.不完全归纳法。这种方法是从特殊情况出发去总结更一般的规律,当然结论未必都是正确的,但却是人类探索未知世界的普遍方式。通常解题方式为:特殊→猜想→数学归纳法证明。例1试给出以下几个数列的通项(不要求证明);1)0,3,8,15,24,35,…;2)1,5,19,65,…;3)-1,0,3,8,15,…。【解】1)an=n2-1;2)an=3n-2n;3)an=n2-2n.例2已知数列{an}满足a1=,a1+a2+…+an=n2an,n≥1,求通项an.【解】因为a1=,又a1+a2=22·a2,所以a2=,a3=,猜想(n≥1).证明;1)当n=1时,a1=,猜想正确。2)假设当n≤k时猜想成立。当n=k+1时,由归纳假设及题设,a1+a1+…+a1=[(k+1)2-1]ak+1,,~~~\n~所以=k(k+2)ak+1,即=k(k+2)ak+1,所以=k(k+2)ak+1,所以ak+1=由数学归纳法可得猜想成立,所以例3设01.【证明】证明更强的结论:1an.又由an+1=5an+移项、平方得①当n≥2时,把①式中的n换成n-1得,即②因为an-10,所以Sn,所以,所以Sn<2,得证。4.特征方程法。例9已知数列{an}满足a1=3,a2=6,an+2=4n+1-4an,求an.【解】由特征方程x2=4x-4得x1=x2=2.故设an=(α+βn)·2n-1,其中,所以α=3,β=0,所以an=3·2n-1.例10已知数列{an}满足a1=3,a2=6,an+2=2an+1+3an,求通项an.【解】由特征方程x2=2x+3得x1=3,x2=-1,所以an=α·3n+β·(-1)n,其中,解得α=,β,所以·3]。5.构造等差或等比数列。~~~\n~例11正数列a0,a1,…,an,…满足=2an-1(n≥2)且a0=a1=1,求通项。【解】由得=1,即令bn=+1,则{bn}是首项为+1=2,公比为2的等比数列,所以bn=+1=2n,所以=(2n-1)2,所以an=·…··a0=注:C1·C2·…·Cn.例12已知数列{xn}满足x1=2,xn+1=,n∈N+,求通项。【解】考虑函数f(x)=的不动点,由=x得x=因为x1=2,xn+1=,可知{xn}的每项均为正数。又+2≥,所以xn+1≥(n≥1)。又Xn+1-==,①Xn+1+==,②由①÷②得。③又>0,~~~\n~由③可知对任意n∈N+,>0且,所以是首项为,公比为2的等比数列。所以·,所以,解得·。注:本例解法是借助于不动点,具有普遍意义。第六章三角函数一、基础知识定义1角,一条射线绕着它的端点旋转得到的图形叫做角。若旋转方向为逆时针方向,则角为正角,若旋转方向为顺时针方向,则角为负角,若不旋转则为零角。角的大小是任意的。定义2角度制,把一周角360等分,每一等价为一度,弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角的弧长为L,则其弧度数的绝对值|α|=,其中r是圆的半径。定义3三角函数,在直角坐标平面内,把角α的顶点放在原点,始边与x轴的正半轴重合,在角的终边上任意取一个不同于原点的点P,设它的坐标为(x,y),到原点的距离为r,则正弦函数sinα=,余弦函数cosα=,正切函数tanα=,余切函数cotα=,正割函数secα=,余割函数cscα=定理1同角三角函数的基本关系式,倒数关系:tanα=,sinα=,cosα=;商数关系:tanα=;乘积关系:tanα×cosα=sinα,cotα×sinα=cosα;平方关系:sin2α+cos2α=1,tan2α+1=sec2α,cot2α+1=csc2α.定理2诱导公式(Ⅰ)sin(α+π)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα,cot(π+α)=cotα;(Ⅱ)sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα,cot(-α)=cotα;(Ⅲ)sin(π-α)=sinα,cos(π-α)=-cosα,tan=(π-α)=-tanα,cot(π-α)=-cotα;(Ⅳ)sin=cosα,cos=sinα,tan=cotα(奇变偶不变,符号看象限)。定理3正弦函数的性质,根据图象可得y=sinx(x∈R)的性质如下。单调区间:在区间~~~\n~上为增函数,在区间上为减函数,最小正周期为2.奇偶数.有界性:当且仅当x=2kx+时,y取最大值1,当且仅当x=3k-时,y取最小值-1。对称性:直线x=k+均为其对称轴,点(k,0)均为其对称中心,值域为[-1,1]。这里k∈Z.定理4余弦函数的性质,根据图象可得y=cosx(x∈R)的性质。单调区间:在区间[2kπ,2kπ+π]上单调递减,在区间[2kπ-π,2kπ]上单调递增。最小正周期为2π。奇偶性:偶函数。对称性:直线x=kπ均为其对称轴,点均为其对称中心。有界性:当且仅当x=2kπ时,y取最大值1;当且仅当x=2kπ-π时,y取最小值-1。值域为[-1,1]。这里k∈Z.定理5正切函数的性质:由图象知奇函数y=tanx(xkπ+)在开区间(kπ-,kπ+)上为增函数,最小正周期为π,值域为(-∞,+∞),点(kπ,0),(kπ+,0)均为其对称中心。定理6两角和与差的基本关系式:cos(αβ)=cosαcosβsinαsinβ,sin(αβ)=sinαcosβcosαsinβ;tan(αβ)=定理7和差化积与积化和差公式:sinα+sinβ=2sincos,sinα-sinβ=2sincos,cosα+cosβ=2coscos,cosα-cosβ=-2sinsin,sinαcosβ=[sin(α+β)+sin(α-β)],cosαsinβ=[sin(α+β)-sin(α-β)],cosαcosβ=[cos(α+β)+cos(α-β)],sinαsinβ=-[cos(α+β)-cos(α-β)].定理8倍角公式:sin2α=2sinαcosα,cos2α=cos2α-sin2α=2cos2α-1=1-2sin2α,tan2α=定理9半角公式:sin=,cos=,tan==~~~\n~定理10万能公式:,,定理11辅助角公式:如果a,b是实数且a2+b20,则取始边在x轴正半轴,终边经过点(a,b)的一个角为β,则sinβ=,cosβ=,对任意的角α.asinα+bcosα=sin(α+β).定理12正弦定理:在任意△ABC中有,其中a,b,c分别是角A,B,C的对边,R为△ABC外接圆半径。定理13余弦定理:在任意△ABC中有a2=b2+c2-2bcosA,其中a,b,c分别是角A,B,C的对边。定理14图象之间的关系:y=sinx的图象经上下平移得y=sinx+k的图象;经左右平移得y=sin(x+)的图象(相位变换);纵坐标不变,横坐标变为原来的,得到y=sin()的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(>0)的图象(周期变换);横坐标不变,纵坐标变为原来的A倍,得到y=Asinx的图象(振幅变换);y=Asin(x+)(,>0)(|A|叫作振幅)的图象向右平移个单位得到y=Asinx的图象。定义4函数y=sinx的反函数叫反正弦函数,记作y=arcsinx(x∈[-1,1]),函数y=cosx(x∈[0,π])的反函数叫反余弦函数,记作y=arccosx(x∈[-1,1]).函数y=tanx的反函数叫反正切函数。记作y=arctanx(x∈[-∞,+∞]).y=cosx(x∈[0,π])的反函数称为反余切函数,记作y=arccotx(x∈[-∞,+∞]).定理15三角方程的解集,如果a∈(-1,1),方程sinx=a的解集是{x|x=nπ+(-1)narcsina,n∈Z}。方程cosx=a的解集是{x|x=2kxarccosa,k∈Z}.如果a∈R,方程tanx=a的解集是{x|x=kπ+arctana,k∈Z}。恒等式:arcsina+arccosa=;arctana+arccota=.~~~\n~定理16若,则sinx-1,所以cos,所以sin(cosx)≤0,又00,所以cos(sinx)>sin(cosx).若,则因为sinx+cosx=(sinxcos+sincosx)=sin(x+)≤<,所以0cos(-cosx)=sin(cosx).综上,当x∈(0,π)时,总有cos(sinx)0,求证:【证明】若α+β>,则x>0,由α>-β>0得cosαsin(-β)=cosβ,所以0<<1,所以若α+β<,则x<0,由0<α<-β<得cosα>cos(-β)=sinβ>0,所以>1。又01,~~~\n~所以,得证。注:以上两例用到了三角函数的单调性和有界性及辅助角公式,值得注意的是角的讨论。3.最小正周期的确定。例4求函数y=sin(2cos|x|)的最小正周期。【解】首先,T=2π是函数的周期(事实上,因为cos(-x)=cosx,所以co|x|=cosx);其次,当且仅当x=kπ+时,y=0(因为|2cosx|≤2<π),所以若最小正周期为T0,则T0=mπ,m∈N+,又sin(2cos0)=sin2sin(2cosπ),所以T0=2π。4.三角最值问题。例5已知函数y=sinx+,求函数的最大值与最小值。【解法一】令sinx=,则有y=因为,所以,所以≤1,所以当,即x=2kπ-(k∈Z)时,ymin=0,当,即x=2kπ+(k∈Z)时,ymax=2.【解法二】因为y=sinx+,=2(因为(a+b)2≤2(a2+b2)),且|sinx|≤1≤,所以0≤sinx+≤2,所以当=sinx,即x=2kπ+(k∈Z)时,ymax=2,当=-sinx,即x=2kπ-(k∈Z)时,ymin=0。例6设0<<π,求sin的最大值。【解】因为0<<π,所以,所以sin>0,cos>0.所以sin(1+cos)=2sin·cos2=≤~~~\n~=当且仅当2sin2=cos2,即tan=时,sin(1+cos)取得最大值。例7若A,B,C为△ABC三个内角,试求sinA+sinB+sinC的最大值。【解】因为sinA+sinB=2sincos,①sinC+sin,②又因为,③由①,②,③得sinA+sinB+sinC+sin≤4sin,所以sinA+sinB+sinC≤3sin=,当A=B=C=时,(sinA+sinB+sinC)max=.注:三角函数的有界性、|sinx|≤1、|cosx|≤1、和差化积与积化和差公式、均值不等式、柯西不等式、函数的单调性等是解三角最值的常用手段。5.换元法的使用。例8求的值域。【解】设t=sinx+cosx=因为所以又因为t2=1+2sinxcosx,所以sinxcosx=,所以,所以~~~\n~因为t-1,所以,所以y-1.所以函数值域为例9已知a0=1,an=(n∈N+),求证:an>.【证明】由题设an>0,令an=tanan,an∈,则an=因为,an∈,所以an=,所以an=又因为a0=tana1=1,所以a0=,所以·。又因为当0x,所以注:换元法的关键是保持换元前后变量取值范围的一致性。另外当x∈时,有tanx>x>sinx,这是个熟知的结论,暂时不证明,学完导数后,证明是很容易的。6.图象变换:y=sinx(x∈R)与y=Asin(x+)(A,,>0).由y=sinx的图象向左平移个单位,然后保持横坐标不变,纵坐标变为原来的A倍,然后再保持纵坐标不变,横坐标变为原来的,得到y=Asin(x+)的图象;也可以由y=sinx的图象先保持横坐标不变,纵坐标变为原来的A倍,再保持纵坐标不变,横坐标变为原来的,最后向左平移个单位,得到y=Asin(x+)的图象。例10例10已知f(x)=sin(x+)(>0,0≤≤π)是R上的偶函数,其图象关于点对称,且在区间上是单调函数,求和的值。【解】由f(x)是偶函数,所以f(-x)=f(x),所以sin(+)=sin(-x+),所以cossinx=0~~~\n~,对任意x∈R成立。又0≤≤π,解得=,因为f(x)图象关于对称,所以=0。取x=0,得=0,所以sin所以(k∈Z),即=(2k+1)(k∈Z).又>0,取k=0时,此时f(x)=sin(2x+)在[0,]上是减函数;取k=1时,=2,此时f(x)=sin(2x+)在[0,]上是减函数;取k=2时,≥,此时f(x)=sin(x+)在[0,]上不是单调函数,综上,=或2。7.三角公式的应用。例11已知sin(α-β)=,sin(α+β)=-,且α-β∈,α+β∈,求sin2α,cos2β的值。【解】因为α-β∈,所以cos(α-β)=-又因为α+β∈,所以cos(α+β)=所以sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β)=,cos2β=cos[(α+β)-(α-β)]=cos(α+β)cos(α-β)+sin(α+β)sin(α-β)=-1.例12已知△ABC的三个内角A,B,C成等差数列,且,试求的值。【解】因为A=1200-C,所以cos=cos(600-C),又由于~~~\n~=,所以=0。解得或。又>0,所以。例13求证:tan20+4cos70.【解】tan20+4cos70=+4sin20第七章解三角形一、基础知识在本章中约定用A,B,C分别表示△ABC的三个内角,a,b,c分别表示它们所对的各边长,为半周长。1.正弦定理:=2R(R为△ABC外接圆半径)。推论1:△ABC的面积为S△ABC=推论2:在△ABC中,有bcosC+ccosB=a.推论3:在△ABC中,A+B=,解a满足,则a=A.正弦定理可以在外接圆中由定义证明得到,这里不再给出,下证推论。先证推论1,由正弦函数定义,BC边上的高为bsinC,所以S△ABC=;再证推论2,因为B+C=-A,所以sin(B+C)=sinA,即sinBcosC+cosBsinC=sinA,两边同乘以2R得~~~\n~bcosC+ccosB=a;再证推论3,由正弦定理,所以,即sinasin(-A)=sin(-a)sinA,等价于[cos(-A+a)-cos(-A-a)]=[cos(-a+A)-cos(-a-A)],等价于cos(-A+a)=cos(-a+A),因为0<-A+a,-a+A<.所以只有-A+a=-a+A,所以a=A,得证。2.余弦定理:a2=b2+c2-2bccosA,下面用余弦定理证明几个常用的结论。(1)斯特瓦特定理:在△ABC中,D是BC边上任意一点,BD=p,DC=q,则AD2=(1)【证明】因为c2=AB2=AD2+BD2-2AD·BDcos,所以c2=AD2+p2-2AD·pcos①同理b2=AD2+q2-2AD·qcos,②因为ADB+ADC=,所以cosADB+cosADC=0,所以q×①+p×②得qc2+pb2=(p+q)AD2+pq(p+q),即AD2=注:在(1)式中,若p=q,则为中线长公式(2)】】:因为b2c2sin2A=b2c2(1-cos2A)=b2c2[(b+c)-a2][a2-(b-c)2]=p(p-a)(p-b)(p-c).这里所以S△ABC=二、方法与例题1.面积法。~~~\n~例1(共线关系的张角公式)如图所示,从O点发出的三条射线满足,另外OP,OQ,OR的长分别为u,w,v,这里α,β,α+β∈(0,),则P,Q,R的共线的充要条件是【证明】P,Q,R共线(α+β)=uwsinα+vwsinβ,得证。2.正弦定理的应用。例2如图所示,△ABC内有一点P,使得BPC-BAC=CPA-CBA=APB-ACB。求证:AP·BC=BP·CA=CP·AB。【证明】过点P作PDBC,PEAC,PFAB,垂足分别为D,E,F,则P,D,C,E;P,E,A,F;P,D,B,F三组四点共圆,所以EDF=PDE+PDF=PCA+PBA=BPC-BAC。由题设及BPC+CPA+APB=3600可得BAC+CBA+ACB=1800。所以BPC-BAC=CPA-CBA=APB-ACB=600。所以EDF=600,同理DEF=600,所以△DEF是正三角形。所以DE=EF=DF,由正弦定理,CDsinACB=APsinBAC=BPsinABC,两边同时乘以△ABC的外接圆直径2R,得CP·BA=AP·BC=BP·AC,得证:例3如图所示,△ABC的各边分别与两圆⊙O1,⊙O2相切,直线GF与DE交于P,求证:PABC。【证明】延长PA交GD于M,因为O1GBC,O2DBC,所以只需证由正弦定理,所以另一方面,,所以,所以,所以PA//O1G,即PABC,得证。~~~\n~3.一个常用的代换:在△ABC中,记点A,B,C到内切圆的切线长分别为x,y,z,则a=y+z,b=z+x,c=x+y.例4在△ABC中,求证:a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.【证明】令a=y+z,b=z+x,c=x+y,则abc=(x+y)(y+z)(z+x)=8xyz=(b+c-a)(a+c-b)(a+b-c)=a2(b+c-a)+b2(c+a-b)+c2(a+b-c)-2abc.所以a2(b+c-a)+b2(c+a-b)+c2(a+b-c)≤3abc.4.三角换元。例5设a,b,c∈R+,且abc+a+c=b,试求的最大值。【解】由题设,令a=tanα,c=tanγ,b=tanβ,则tanβ=tan(α+γ),P=2sinγsin(2α+γ)+3cos2γ≤,当且仅当α+β=,sinγ=,即a=时,Pmax=例6在△ABC中,若a+b+c=1,求证:a2+b2+c2+4abc<【证明】设a=sin2αcos2β,b=cos2αcos2β,c=sin2β,β.因为a,b,c为三边长,所以c<,c>|a-b|,从而,所以sin2β>|cos2α·cos2β|.因为1=(a+b+c)2=a2+b2+c2+2(ab+bc+ca),所以a2+b2+c2+4abc=1-2(ab+bc+ca-2abc).又ab+bc+ca-2abc=c(a+b)+ab(1-2c)=sin2βcos2β+sin2αcos2α·cos4β·cos2β=[1-cos22β+(1-cos22α)cos4βcos2β]=+cos2β(cos4β-cos22αcos4β-cos2β)>+cos2β(cos4β-sin4β-cos2β)=.所以a2+b2+c2+4abc<~~~\n~第八章平面向量一、基础知识定义1既有大小又有方向的量,称为向量。画图时用有向线段来表示,线段的长度表示向量的模。向量的符号用两个大写字母上面加箭头,或一个小写字母上面加箭头表示。书中用黑体表示向量,如a.|a|表示向量的模,模为零的向量称为零向量,规定零向量的方向是任意的。零向量和零不同,模为1的向量称为单位向量。定义2方向相同或相反的向量称为平行向量(或共线向量),规定零向量与任意一个非零向量平行和结合律。定理1向量的运算,加法满足平行四边形法规,减法满足三角形法则。加法和减法都满足交换律和结合律。定理2非零向量a,b共线的充要条件是存在实数0,使得a=f定理3平面向量的基本定理,若平面内的向量a,b不共线,则对同一平面内任意向是c,存在唯一一对实数x,y,使得c=xa+yb,其中a,b称为一组基底。定义3向量的坐标,在直角坐标系中,取与x轴,y轴方向相同的两个单位向量i,j作为基底,任取一个向量c,由定理3可知存在唯一一组实数x,y,使得c=xi+yi,则(x,y)叫做c坐标。定义4向量的数量积,若非零向量a,b的夹角为,则a,b的数量积记作a·b=|a|·|b|cos=|a|·|b|cos,也称内积,其中|b|cos叫做b在a上的投影(注:投影可能为负值)。定理4平面向量的坐标运算:若a=(x1,y1),b=(x2,y2),1.a+b=(x1+x2,y1+y2),a-b=(x1-x2,y1-y2),2.λa=(λx1,λy1),a·(b+c)=a·b+a·c,3.a·b=x1x2+y1y2,cos(a,b)=(a,b0),4.a//bx1y2=x2y1,abx1x2+y1y2=0.定义5若点P是直线P1P2上异于p1,p2的一点,则存在唯一实数λ,使,λ叫P分所成的比,若O为平面内任意一点,则。由此可得若P1,P,P2的坐标分别为(x1,y1),(x,y),(x2,y2),则定义6设F是坐标平面内的一个图形,将F上所有的点按照向量a=(h,k)的方向,平移|a|=个单位得到图形,这一过程叫做平移。设p(x,y)是F上任意一点,平移到上对应的点为,则称为平移公式。定理5对于任意向量a=(x1,y1),b=(x2,y2),|a·b|≤|a|·|b|,并且|a+b|≤|a|+|b|.~~~\n~【证明】因为|a|2·|b|2-|a·b|2=-(x1x2+y1y2)2=(x1y2-x2y1)2≥0,又|a·b|≥0,|a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1,x2,…,xn),b=(y1,y2,…,yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2≥0,又|a·b|≥0,|a|·|b|≥0,所以|a|·|b|≥|a·b|.由向量的三角形法则及直线段最短定理可得|a+b|≤|a|+|b|.注:本定理的两个结论均可推广。1)对n维向量,a=(x1,x2,…,xn),b=(y1,y2,…,yn),同样有|a·b|≤|a|·|b|,化简即为柯西不等式:(x1y1+x2y2+…+xnyn)2。2)对于任意n个向量,a1,a2,…,an,有|a1,a2,…,an|≤|a1|+|a2|+…+|an|。二、方向与例题1.向量定义和运算法则的运用。例1设O是正n边形A1A2…An的中心,求证:【证明】记,若,则将正n边形绕中心O旋转后与原正n边形重合,所以不变,这不可能,所以例2给定△ABC,求证:G是△ABC重心的充要条件是【证明】必要性。如图所示,设各边中点分别为D,E,F,延长AD至P,使DP=GD,则又因为BC与GP互相平分,所以BPCG为平行四边形,所以BGPC,所以所以充分性。若,延长AG交BC于D,使GP=AG,连结CP,则因为,则,所以GBCP,所以AG平分BC。同理BG平分CA。所以G为重心。例3在凸四边形ABCD中,P和Q分别为对角线BD和AC的中点,求证:AB2+BC2+CD2+DA2=AC2+BD2+4PQ2。【证明】如图所示,结结BQ,QD。因为,~~~\n~所以=·=①又因为同理,②,③由①,②,③可得。得证。2.证利用定理2证明共线。例4△ABC外心为O,垂心为H,重心为G。求证:O,G,H为共线,且OG:GH=1:2。【证明】首先=其次设BO交外接圆于另一点E,则连结CE后得CE又AHBC,所以AH//CE。又EAAB,CHAB,所以AHCE为平行四边形。所以所以,所以,所以与共线,所以O,G,H共线。所以OG:GH=1:2。3.利用数量积证明垂直。例5给定非零向量a,b.求证:|a+b|=|a-b|的充要条件是ab.【证明】|a+b|=|a-b|(a+b)2=(a-b)2a2+2a·b+b2=a2-2a·b+b2a·b=0ab.例6已知△ABC内接于⊙O,AB=AC,D为AB中点,E为△ACD重心。求证:OECD。【证明】设,~~~\n~则,又,所以a·(b-c).(因为|a|2=|b|2=|c|2=|OH|2)又因为AB=AC,OB=OC,所以OA为BC的中垂线。所以a·(b-c)=0.所以OECD。4.向量的坐标运算。例7已知四边形ABCD是正方形,BE//AC,AC=CE,EC的延长线交BA的延长线于点F,求证:AF=AE。【证明】如图所示,以CD所在的直线为x轴,以C为原点建立直角坐标系,设正方形边长为1,则A,B坐标分别为(-1,1)和(0,1),设E点的坐标为(x,y),则=(x,y-1),,因为,所以-x-(y-1)=0.又因为,所以x2+y2=2.由①,②解得所以设,则。由和共线得所以,即F,所以=4+,所以AF=AE。第九章不等式一、基础知识不等式的基本性质:(1)a>ba-b>0;(2)a>b,b>ca>c;(3)a>ba+c>b+c;(4)a>b,c>0ac>bc;~~~\n~(5)a>b,c<0acb>0,c>d>0ac>bd;(7)a>b>0,n∈N+an>bn;(8)a>b>0,n∈N+;(9)a>0,|x|ax>a或x<-a;(10)a,b∈R,则|a|-|b|≤|a+b|≤|a|+|b|;(11)a,b∈R,则(a-b)2≥0a2+b2≥2ab;(12)x,y,z∈R+,则x+y≥2,x+y+z前五条是显然的,以下从第六条开始给出证明。(6)因为a>b>0,c>d>0,所以ac>bc,bc>bd,所以ac>bd;重复利用性质(6),可得性质(7);再证性质(8),用反证法,若,由性质(7)得,即a≤b,与a>b矛盾,所以假设不成立,所以;由绝对值的意义知(9)成立;-|a|≤a≤|a|,-|b|≤b≤|b|,所以-(|a|+|b|)≤a+b≤|a|+|b|,所以|a+b|≤|a|+|b|;下面再证(10)的左边,因为|a|=|a+b-b|≤|a+b|+|b|,所以|a|-|b|≤|a+b|,所以(10)成立;(11)显然成立;下证(12),因为x+y-2≥0,所以x+y≥,当且仅当x=y时,等号成立,再证另一不等式,令,因为x3+b3+c3-3abc=(a+b)3+c3-3a2b-3ab2-3abc=(a+b)3+c3-3ab(a+b+c)=(a+b+c)[(a+b)2-(a+b)c+c2]-3ab(a+b+c)=(a+b+c)(a2+b2+c2-ab-bc-ca)=(a+b+c)[(a-b)2+(b-c)2+(c-a)2]≥0,所以a3+b3+c3≥3abc,即x+y+z≥,等号当且仅当x=y=z时成立。二、方法与例题1.不等式证明的基本方法。(1)比较法,在证明A>B或A0)与1比较大小,最后得出结论。例1设a,b,c∈R+,试证:对任意实数x,y,z,有x2+y2+z2【证明】左边-右边=x2+y2+z2~~~\n~所以左边≥右边,不等式成立。例2若alog(1-x)(1-x)=1(因为0<1-x2<1,所以>1-x>0,0<1-x<1).所以|loga(1+x)|>|loga(1-x)|.(2)分析法,即从欲证不等式出发,层层推出使之成立的充分条件,直到已知为止,叙述方式为:要证……,只需证……。例3已知a,b,c∈R+,求证:a+b+c-3≥a+b【证明】要证a+b+c≥a+b只需证,因为,所以原不等式成立。例4已知实数a,b,c满足0(n+1)n.【证明】1)当n=3时,因为34=81>64=43,所以命题成立。2)设n=k时有kk+1>(k+1)k,当n=k+1时,只需证(k+1)k+2>(k+2)k+1,即>1.~~~\n~因为,所以只需证,即证(k+1)2k+2>[k(k+2)]k+1,只需证(k+1)2>k(k+2),即证k2+2k+1>k2+2k.显然成立。所以由数学归纳法,命题成立。(4)反证法。例6设实数a0,a1,…,an满足a0=an=0,且a0-2a1+a2≥0,a1-2a2+a3≥0,…,an-2-2an-1+an≥0,求证ak≤0(k=1,2,…,n-1).【证明】假设ak(k=1,2,…,n-1)中至少有一个正数,不妨设ar是a1,a2,…,an-1中第一个出现的正数,则a1≤0,a2≤0,…,ar-1≤0,ar>0.于是ar-ar-1>0,依题设ak+1-ak≥ak-ak-1(k=1,2,…,n-1)。所以从k=r起有an-ak-1≥an-1-an-2≥…≥ar-ar-1>0.因为an≥ak-1≥…≥ar+1≥ar>0与an=0矛盾。故命题获证。(5)分类讨论法。例7已知x,y,z∈R+,求证:【证明】不妨设x≥y,x≥z.ⅰ)x≥y≥z,则,x2≥y2≥z2,由排序原理可得,原不等式成立。ⅱ)x≥z≥y,则,x2≥z2≥y2,由排序原理可得,原不等式成立。(6)放缩法,即要证A>B,可证A>C1,C1≥C2,…,Cn-1≥Cn,Cn>B(n∈N+).例8求证:【证明】,得证。例9已知a,b,c是△ABC的三条边长,m>0,求证:【证明】~~~\n~(因为a+b>c),得证。(7)引入参变量法。例10已知x,y∈R+,l,a,b为待定正数,求f(x,y)=的最小值。【解】设,则,f(x,y)=(a3+b3+3a2b+3ab2)=,等号当且仅当时成立。所以f(x,y)min=例11设x1≥x2≥x3≥x4≥2,x2+x3+x4≥x1,求证:(x1+x2+x3+x4)2≤4x1x2x3x4.【证明】设x1=k(x2+x3+x4),依题设有≤k≤1,x3x4≥4,原不等式等价于(1+k)2(x2+x3+x4)2≤4kx2x3x4(x2+x3+x4),即(x2+x3+x4)≤x2x3x4,因为f(k)=k+在上递减,所以(x2+x3+x4)=(x2+x3+x4)≤·3x2=4x2≤x2x3x4.所以原不等式成立。(8)局部不等式。例12已知x,y,z∈R+,且x2+y2+z2=1,求证:【证明】先证因为x(1-x2)=,所以~~~\n~同理,,所以例13已知0≤a,b,c≤1,求证:≤2。【证明】先证①即a+b+c≤2bc+2.即证(b-1)(c-1)+1+bc≥a.因为0≤a,b,c≤1,所以①式成立。同理三个不等式相加即得原不等式成立。(9)利用函数的思想。例14已知非负实数a,b,c满足ab+bc+ca=1,求f(a,b,c)=的最小值。【解】当a,b,c中有一个为0,另两个为1时,f(a,b,c)=,以下证明f(a,b,c)≥.不妨设a≥b≥c,则0≤c≤,f(a,b,c)=因为1=(a+b)c+ab≤+(a+b)c,解关于a+b的不等式得a+b≥2(-c).考虑函数g(t)=,g(t)在[)上单调递增。又因为0≤c≤,所以3c2≤1.所以c2+a≥4c2.所以2≥所以f(a,b,c)=≥~~~\n~==≥下证0①c2+6c+9≥9c2+9≥0因为,所以①式成立。所以f(a,b,c)≥,所以f(a,b,c)min=2.几个常用的不等式。(1)柯西不等式:若ai∈R,bi∈R,i=1,2,…,n,则等号当且仅当存在λ∈R,使得对任意i=1,2,,n,ai=λbi,变式1:若ai∈R,bi∈R,i=1,2,…,n,则等号成立条件为ai=λbi,(i=1,2,…,n)。变式2:设ai,bi同号且不为0(i=1,2,…,n),则等号成立当且仅当b1=b2=…=bn.(2)平均值不等式:设a1,a2,…,an∈R+,记Hn=,Gn=,An=,则Hn≤Gn≤An≤Qn.即调和平均≤几何平均≤算术平均≤平方平均。其中等号成立的条件均为a1=a2=…=an.【证明】由柯西不等式得An≤Qn,再由Gn≤An可得Hn≤Gn,以下仅证Gn≤An.~~~\n~1)当n=2时,显然成立;2)设n=k时有Gk≤Ak,当n=k+1时,记=Gk+1.因为a1+a2+…+ak+ak+1+(k-1)Gk+1≥≥2kGk+1,所以a1+a2+…+ak+1≥(k+1)Gk+1,即Ak+1≥Gk+1.所以由数学归纳法,结论成立。(3)排序不等式:若两组实数a1≤a2≤…≤an且b1≤b2≤…≤bn,则对于b1,b2,…,bn的任意排列,有a1bn+a2bn-1+…+anb1≤≤a1b1+a2b2+…+anbn.【证明】引理:记A0=0,Ak=,则=(阿贝尔求和法)。证法一:因为b1≤b2≤…≤bn,所以≥b1+b2+…+bk.记sk=-(b1+b2+…+bk),则sk≥0(k=1,2,…,n)。所以-(a1b1+a2b2+…+anbn)=+snan≤0.最后一个不等式的理由是aj-aj+1≤0(j=1,2,…,n-1,sn=0),所以右侧不等式成立,同理可证左侧不等式。证法二:(调整法)考察,若,则存在。若(j≤n-1),则将与互换。因为≥0,所调整后,和是不减的,接下来若,则继续同样的调整。至多经n-1次调整就可将乱序和调整为顺序和,而且每次调整后和是不减的,这说明右边不等式成立,同理可得左边不等式。例15已知a1,a2,…,an∈R+,求证;a1+a2+…+an.~~~\n~【证明】证法一:因为,…,≥2an.上述不等式相加即得≥a1+a2+…+an.证法二:由柯西不等式(a1+a2+…+an)≥(a1+a2+…+an)2,因为a1+a2+…+an>0,所以≥a1+a2+…+an.证法三:设a1,a2,…,an从小到大排列为,则,,由排序原理可得=a1+a2+…+an≥,得证。注:本讲的每种方法、定理都有极广泛的应用,希望读者在解题中再加以总结。第十章直线与圆的方程一、基础知识1.解析几何的研究对象是曲线与方程。解析法的实质是用代数的方法研究几何.首先是通过映射建立曲线与方程的关系,即如果一条曲线上的点构成的集合与一个方程的解集之间存在一一映射,则方程叫做这条曲线的方程,这条曲线叫做方程的曲线。如x2+y2=1是以原点为圆心的单位圆的方程。2.求曲线方程的一般步骤:(1)建立适当的直角坐标系;(2)写出满足条件的点的集合;(3)用坐标表示条件,列出方程;(4)化简方程并确定未知数的取值范围;(5)证明适合方程的解的对应点都在曲线上,且曲线上对应点都满足方程(实际应用常省略这一步)。3.直线的倾斜角和斜率:直线向上的方向与x轴正方向所成的小于1800的正角,叫做它的倾斜角。规定平行于x轴的直线的倾斜角为00,倾斜角的正切值(如果存在的话)叫做该直线的斜率。根据直线上一点及斜率可求直线方程。4.直线方程的几种形式:(1)一般式:Ax+By+C=0;(2)点斜式:y-y0=k(x-x0);(3)斜截式:y=kx+b;(4)截距式:;(5)两点式:;(6)法线式方程:xcosθ+ysinθ=p(其中θ为法线倾斜角,|p|为原点到直线的距离);(7)参数式:~~~\n~(其中θ为该直线倾斜角),t的几何意义是定点P0(x0,y0)到动点P(x,y)的有向线段的数量(线段的长度前添加正负号,若P0P方向向上则取正,否则取负)。5.到角与夹角:若直线l1,l2的斜率分别为k1,k2,将l1绕它们的交点逆时针旋转到与l2重合所转过的最小正角叫l1到l2的角;l1与l2所成的角中不超过900的正角叫两者的夹角。若记到角为θ,夹角为α,则tanθ=,tanα=.6.平行与垂直:若直线l1与l2的斜率分别为k1,k2。且两者不重合,则l1//l2的充要条件是k1=k2;l1l2的充要条件是k1k2=-1。7.两点P1(x1,y1)与P2(x2,y2)间的距离公式:|P1P2|=。8.点P(x0,y0)到直线l:Ax+By+C=0的距离公式:。9.直线系的方程:若已知两直线的方程是l1:A1x+B1y+C1=0与l2:A2x+B2y+C2=0,则过l1,l2交点的直线方程为A1x+B1y+C1+λ(A2x+B2y+C2=0;由l1与l2组成的二次曲线方程为(A1x+B1y+C1)(A2x+B2y+C2)=0;与l2平行的直线方程为A1x+B1y+C=0().10.二元一次不等式表示的平面区域,若直线l方程为Ax+By+C=0.若B>0,则Ax+By+C>0表示的区域为l上方的部分,Ax+By+C<0表示的区域为l下方的部分。11.解决简单的线性规划问题的一般步骤:(1)确定各变量,并以x和y表示;(2)写出线性约束条件和线性目标函数;(3)画出满足约束条件的可行域;(4)求出最优解。12.圆的标准方程:圆心是点(a,b),半径为r的圆的标准方程为(x-a)2+(y-b)2=r2,其参数方程为(θ为参数)。13.圆的一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0)。其圆心为,半径为。若点P(x0,y0)为圆上一点,则过点P的切线方程为①14.根轴:到两圆的切线长相等的点的轨迹为一条直线(或它的一部分),这条直线叫两圆的根轴。给定如下三个不同的圆:x2+y2+Dix+Eiy+Fi=0,i=1,2,3.则它们两两的根轴方程分别为(D1-D2)x+(E1-E2)y+(F1-F2)=0;(D2-D3)x+(E2-E3)y+(F2-F3)=0;(D3-D1)x+(E3-E1)y+(F3-F1)=0。不难证明这三条直线交于一点或者互相平行,这就是著名的蒙日定理。二、方法与例题1.坐标系的选取:建立坐标系应讲究简单、对称,以便使方程容易化简。例1在ΔABC中,AB=AC,∠A=900,过A引中线BD的垂线与BC交于点E,求证:∠ADB=∠CDE。~~~\n~[证明]见图10-1,以A为原点,AC所在直线为x轴,建立直角坐标系。设点B,C坐标分别为(0,2a),(2a,0),则点D坐标为(a,0)。直线BD方程为,①直线BC方程为x+y=2a,②设直线BD和AE的斜率分别为k1,k2,则k1=-2。因为BDAE,所以k1k2=-1.所以,所以直线AE方程为,由解得点E坐标为。所以直线DE斜率为因为k1+k3=0.所以∠BDC+∠EDC=1800,即∠BDA=∠EDC。例2半径等于某个正三角形高的圆在这个三角形的一条边上滚动。证明:三角形另两条边截圆所得的弧所对的圆心角为600。[证明]以A为原点,平行于正三角形ABC的边BC的直线为x轴,建立直角坐标系见图10-2,设⊙D的半径等于BC边上的高,并且在B能上能下滚动到某位置时与AB,AC的交点分别为E,F,设半径为r,则直线AB,AC的方程分别为,.设⊙D的方程为(x-m)2+y2=r2.①设点E,F的坐标分别为(x1,y1),(x2,y2),则,分别代入①并消去y得所以x1,x2是方程4x2-2mx+m2-r2=0的两根。由韦达定理,所以|EF|2=(x1-x2)2+(y1-y2)2=(x1-x2)2+3(x1-x2)2=4(x1+x2)2-4x1x2=m2-(m2-r2)=r2.所以|EF|=r。所以∠EDF=600。2.到角公式的使用。例3设双曲线xy=1的两支为C1,C2,正ΔPQR三顶点在此双曲线上,求证:P,Q,R不可能在双曲线的同一支上。[证明]假设P,Q,R在同一支上,不妨设在右侧一支C1上,并设P,Q,R三点的坐标分别为且0-1,在(1)区域里,求函数f(x,y)=y-ax的最大值、最小值。~~~\n~[解](1)由已知得或解得点(x,y)所在的平面区域如图10-4所示,其中各直线方程如图所示。AB:y=2x-5;CD:y=-2x+1;AD:x+y=1;BC:x+y=4.(2)f(x,y)是直线l:y-ax=k在y轴上的截距,直线l与阴影相交,因为a>-1,所以它过顶点C时,f(x,y)最大,C点坐标为(-3,7),于是f(x,y)的最大值为3a+7.如果-12,则l通过B(3,1)时,f(x,y)取最小值为-3a+1.6.参数方程的应用。例7如图10-5所示,过原点引直线交圆x2+(y-1)2=1于Q点,在该直线上取P点,使P到直线y=2的距离等于|PQ|,求P点的轨迹方程。[解]设直线OP的参数方程为(t参数)。代入已知圆的方程得t2-t•2sinα=0.所以t=0或t=2sinα。所以|OQ|=2|sinα|,而|OP|=t.所以|PQ|=|t-2sinα|,而|PM|=|2-tsinα|.所以|t-2sinα|=|2-tsinα|.化简得t=2或t=-2或sinα=-1.当t=±2时,轨迹方程为x2+y2=4;当sinα=1时,轨迹方程为x=0.7.与圆有关的问题。例8点A,B,C依次在直线l上,且AB=ABC,过C作l的垂线,M是这条垂线上的动点,以A为圆心,AB为半径作圆,MT1与MT2是这个圆的切线,确定ΔAT1T2垂心的轨迹。[解]见图10-6,以A为原点,直线AB为x轴建立坐标系,H为OM与圆的交点,N为T1T2与OM的交点,记BC=1。以A为圆心的圆方程为x2+y2=16,连结OT1,OT2。因为OT2MT2,T1HMT2,所以OT2//HT1,同理OT1//HT2,又OT1=OT2,所以OT1HT2是菱形。所以2ON=OH。又因为OMT1T2,OT1MT1,所以ON•OM。设点H坐标为(x,y)。点M坐标为(5,b),则点N坐标为,将坐标代入=ON•OM,再由得在AB上取点K,使AK=AB,所求轨迹是以K为圆心,AK为半径的圆。例9已知圆x2+y2=1和直线y=2x+m相交于A,B,且OA,OB与x轴正方向所成的角是α和β,见图10-7,求证:sin(α+β)是定值。[证明]过D作ODAB于D。则直线OD的倾斜角为,因为ODAB,所以2•,~~~\n~所以。所以例10已知⊙O是单位圆,正方形ABCD的一边AB是⊙O的弦,试确定|OD|的最大值、最小值。[解]以单位圆的圆心为原点,AB的中垂线为x轴建立直角坐标系,设点A,B的坐标分别为A(cosα,sinα),B(cosα,-sinα),由题设|AD|=|AB|=2sinα,这里不妨设A在x轴上方,则α∈(0,π).由对称性可设点D在点A的右侧(否则将整个图形关于y轴作对称即可),从而点D坐标为(cosα+2sinα,sinα),所以|OD|==因为,所以当时,|OD|max=+1;当时,|OD|min=例11当m变化且m≠0时,求证:圆(x-2m-1)2+(y-m-1)2=4m2的圆心在一条定直线上,并求这一系列圆的公切线的方程。[证明]由消去m得a-2b+1=0.故这些圆的圆心在直线x-2y+1=0上。设公切线方程为y=kx+b,则由相切有2|m|=,对一切m≠0成立。即(-4k-3)m2+2(2k-1)(k+b-1)m+(k+b-1)2=0对一切m≠0成立,所以即当k不存在时直线为x=1。所以公切线方程y=和x=1.第十一章圆锥曲线一、基础知识1.椭圆的定义,第一定义:平面上到两个定点的距离之和等于定长(大于两个定点之间的距离)的点的轨迹,即|PF1|+|PF2|=2a(2a>|F1F2|=2c).第二定义:平面上到一个定点的距离与到一条定直线的距离之比为同一个常数e(0b>0),参数方程为(为参数)。若焦点在y轴上,列标准方程为(a>b>0)。3.椭圆中的相关概念,对于中心在原点,焦点在x轴上的椭圆,a称半长轴长,b称半短轴长,c称为半焦距,长轴端点、短轴端点、两个焦点的坐标分别为(±a,0),(0,±b),(±c,0);与左焦点对应的准线(即第二定义中的定直线)为,与右焦点对应的准线为;定义中的比e称为离心率,且,由c2+b2=a2知0b>0),F1(-c,0),F2(c,0)是它的两焦点。若P(x,y)是椭圆上的任意一点,则|PF1|=a+ex,|PF2|=a-ex.5.几个常用结论:1)过椭圆上一点P(x0,y0)的切线方程为;2)斜率为k的切线方程为;3)过焦点F2(c,0)倾斜角为θ的弦的长为。6.双曲线的定义,第一定义:满足||PF1|-|PF2||=2a(2a<2c=|F1F2|,a>0)的点P的轨迹;~~~\n~第二定义:到定点的距离与到定直线距离之比为常数e(>1)的点的轨迹。7.双曲线的方程:中心在原点,焦点在x轴上的双曲线方程为,参数方程为(为参数)。焦点在y轴上的双曲线的标准方程为。8.双曲线的相关概念,中心在原点,焦点在x轴上的双曲线(a,b>0),a称半实轴长,b称为半虚轴长,c为半焦距,实轴的两个端点为(-a,0),(a,0).左、右焦点为F1(-c,0),F2(c,0),对应的左、右准线方程分别为离心率,由a2+b2=c2知e>1。两条渐近线方程为,双曲线与有相同的渐近线,它们的四个焦点在同一个圆上。若a=b,则称为等轴双曲线。9.双曲线的常用结论,1)焦半径公式,对于双曲线,F1(-c,0),F2(c,0)是它的两个焦点。设P(x,y)是双曲线上的任一点,若P在右支上,则|PF1|=ex+a,|PF2|=ex-a;若P(x,y)在左支上,则|PF1|=-ex-a,|PF2|=-ex+a.2)过焦点的倾斜角为θ的弦长是。10.抛物线:平面内与一个定点F和一条定直线l的距离相等的点的轨迹叫做抛物线,点F叫焦点,直线l叫做抛物线的准线。若取经过焦点F且垂直于准线l的直线为x轴,x轴与l相交于K,以线段KF的垂直平分线为y轴,建立直角坐标系,设|KF|=p,则焦点F坐标为,准线方程为,标准方程为y2=2px(p>0),离心率e=1.11.抛物线常用结论:若P(x0,y0)为抛物线上任一点,1)焦半径|PF|=;2)过点P的切线方程为y0y=p(x+x0);3)过焦点倾斜角为θ的弦长为。12.极坐标系,在平面内取一个定点为极点记为O,从O出发的射线为极轴记为Ox~~~\n~轴,这样就建立了极坐标系,对于平面内任意一点P,记|OP|=ρ,∠xOP=θ,则由(ρ,θ)唯一确定点P的位置,(ρ,θ)称为极坐标。13.圆锥曲线的统一定义:到定点的距离与到定直线的距离的比为常数e的点P,若01,则点P的轨迹为双曲线的一支;若e=1,则点P的轨迹为抛物线。这三种圆锥曲线统一的极坐标方程为。二、方法与例题1.与定义有关的问题。例1已知定点A(2,1),F是椭圆的左焦点,点P为椭圆上的动点,当3|PA|+5|PF|取最小值时,求点P的坐标。[解]见图11-1,由题设a=5,b=4,c==3,.椭圆左准线的方程为,又因为,所以点A在椭圆内部,又点F坐标为(-3,0),过P作PQ垂直于左准线,垂足为Q。由定义知,则|PF|=|PQ|。所以3|PA|+5|PF|=3(|PA|+|PF|)=3(|PA|+|PQ|)≥3|AM|(AM左准线于M)。所以当且仅当P为AM与椭圆的交点时,3|PA|+5|PF|取最小值,把y=1代入椭圆方程得,又x<0,所以点P坐标为例2已知P,为双曲线C:右支上两点,延长线交右准线于K,PF1延长线交双曲线于Q,(F1为右焦点)。求证:∠F1K=∠KF1Q.[证明]记右准线为l,作PDl于D,于E,因为//PD,则,又由定义,所以,由三角形外角平分线定理知,F1K为∠PF1P的外角平分线,所以∠=∠KF1Q。2.求轨迹问题。例3已知一椭圆及焦点F,点A为椭圆上一动点,求线段FA中点P的轨迹方程。[解法一]利用定义,以椭圆的中心为原点O,焦点所在的直线为x轴,建立直角坐标系,设椭圆方程:=1(a>b>0).F坐标为(-c,0).设另一焦点为。连结,OP~~~\n~,则。所以|FP|+|PO|=(|FA|+|A|)=a.所以点P的轨迹是以F,O为两焦点的椭圆(因为a>|FO|=c),将此椭圆按向量m=(,0)平移,得到中心在原点的椭圆:。由平移公式知,所求椭圆的方程为[解法二]相关点法。设点P(x,y),A(x1,y1),则,即x1=2x+c,y1=2y.又因为点A在椭圆上,所以代入得关于点P的方程为。它表示中心为,焦点分别为F和O的椭圆。例4长为a,b的线段AB,CD分别在x轴,y轴上滑动,且A,B,C,D四点共圆,求此动圆圆心P的轨迹。[解]设P(x,y)为轨迹上任意一点,A,B,C,D的坐标分别为A(x-,0),B(x+,0),C(0,y-),D(0,y+),记O为原点,由圆幂定理知|OA|•|OB|=|OC|•|OD|,用坐标表示为,即当a=b时,轨迹为两条直线y=x与y=-x;当a>b时,轨迹为焦点在x轴上的两条等轴双曲线;当a0,b>0)的右焦点F作B1B2轴,交双曲线于B1,B2两点,B2与左焦点F1连线交双曲线于B点,连结B1B交x轴于H点。求证:H的横坐标为定值。[证明]设点B,H,F的坐标分别为(asecα,btanα),(x0,0),(c,0),则F1,B1,B2的坐标分别为(-c,0),(c,),(c,),因为F1,H分别是直线B2F,BB1与x轴的交点,所以①所以。由①得代入上式得~~~\n~即(定值)。注:本例也可借助梅涅劳斯定理证明,读者不妨一试。例7设抛物线y2=2px(p>0)的焦点为F,经过点F的直线交抛物线于A,B两点,点C在准线上,且BC//x轴。证明:直线AC经过定点。[证明]设,则,焦点为,所以,,,。由于,所以•y2-y1=0,即=0。因为,所以。所以,即。所以,即直线AC经过原点。例8椭圆上有两点A,B,满足OAOB,O为原点,求证:为定值。[证明]设|OA|=r1,|OB|=r2,且∠xOA=θ,∠xOB=,则点A,B的坐标分别为A(r1cosθ,r1sinθ),B(-r2sinθ,r2cosθ)。由A,B在椭圆上有即①②①+②得(定值)。4.最值问题。例9设A,B是椭圆x2+3y2=1上的两个动点,且OAOB(O为原点),求|AB|的最大值与最小值。[解]由题设a=1,b=,记|OA|=r1,|OB|=r2,,参考例8可得=4。设~~~\n~m=|AB|2=,因为,且a2>b2,所以,所以b≤r1≤a,同理b≤r2≤a.所以。又函数f(x)=x+在上单调递减,在上单调递增,所以当t=1即|OA|=|OB|时,|AB|取最小值1;当或时,|AB|取最大值。例10设一椭圆中心为原点,长轴在x轴上,离心率为,若圆C:1上点与这椭圆上点的最大距离为,试求这个椭圆的方程。[解]设A,B分别为圆C和椭圆上动点。由题设圆心C坐标为,半径|CA|=1,因为|AB|≤|BC|+|CA|=|BC|+1,所以当且仅当A,B,C共线,且|BC|取最大值时,|AB|取最大值,所以|BC|最大值为因为;所以可设椭圆半长轴、半焦距、半短轴长分别为2t,,t,椭圆方程为,并设点B坐标为B(2tcosθ,tsinθ),则|BC|2=(2tcosθ)2+=3t2sin2θ-3tsinθ++4t2=-3(tsinθ+)2+3+4t2.若,则当sinθ=-1时,|BC|2取最大值t2+3t+,与题设不符。若t>,则当sinθ=时,|BC|2取最大值3+4t2,由3+4t2=7得t=1.所以椭圆方程为。5.直线与二次曲线。例11若抛物线y=ax2-1上存在关于直线x+y=0成轴对称的两点,试求a的取值范围。~~~\n~[解]抛物线y=ax2-1的顶点为(0,-1),对称轴为y轴,存在关于直线x+y=0对称两点的条件是存在一对点P(x1,y1),(-y1,-x1),满足y1=a且-x1=a(-y1)2-1,相减得x1+y1=a(),因为P不在直线x+y=0上,所以x1+y1≠0,所以1=a(x1-y1),即x1=y1+所以此方程有不等实根,所以,求得,即为所求。例12若直线y=2x+b与椭圆相交,(1)求b的范围;(2)当截得弦长最大时,求b的值。[解]二方程联立得17x2+16bx+4(b2-1)=0.由Δ>0,得h.[证明]不妨设A到面BCD的高线长AH=h,AC与BD间的距离为d,作AFBD于点F,CNBD于点N,则CN//HF,在面BCD内作矩形CNFE,连AE,因为BD//CE,所以BD//平面ACE,所以BD到面ACE的距离为BD与AC间的距离d。在ΔAEF中,AH为边EF上的高,AE边上的高FG=d,作EMAF于M,则由EC//平面ABD知,EM为点C到面ABD的距离(因EM面ABD),于是EM≥AH=h。在RtΔEMF与RtΔAHF中,由EM≥AH得EF≥AF。又因为ΔAEH∽ΔFEG,所以≤2。所以2d>h.注:在前面例题中除用到教材中的公理、定理外,还用到了向量法、体积法、射影法,请读者在解题中认真总结。第十三章排列组合与概率一、基础知识1.加法原理:做一件事有n类办法,在第1类办法中有m1种不同的方法,在第2类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事一共有N=m1+m2+…+mn种不同的方法。2.乘法原理:做一件事,完成它需要分n个步骤,第1步有m1种不同的方法,第2步有m2种不同的方法,……,第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法。3.排列与排列数:从n个不同元素中,任取m(m≤n)个元素,按照一定顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,从n个不同元素中取出m个(m≤n)元素的所有排列个数,叫做从n个不同元素中取出m个元素的排列数,用表示,=n(n-1)…(n-m+1)=,其中m,n∈N,m≤n,注:一般地=1,0!=1,=n!。4.N个不同元素的圆周排列数为=(n-1)!。5.组合与组合数:一般地,从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合,即从n个不同元素中不计顺序地取出m个构成原集合的一个子集。从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用表示:~~~\n~6.组合数的基本性质:(1);(2);(3);(4);(5);(6)。7.定理1:不定方程x1+x2+…+xn=r的正整数解的个数为。[证明]将r个相同的小球装入n个不同的盒子的装法构成的集合为A,不定方程x1+x2+…+xn=r的正整数解构成的集合为B,A的每个装法对应B的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B中每一个解(x1,x2,…,xn),将xi作为第i个盒子中球的个数,i=1,2,…,n,便得到A的一个装法,因此为满射,所以是一一映射,将r个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n份,共有种。故定理得证。推论1不定方程x1+x2+…+xn=r的非负整数解的个数为推论2从n个不同元素中任取m个允许元素重复出现的组合叫做n个不同元素的m可重组合,其组合数为8.二项式定理:若n∈N+,则(a+b)n=.其中第r+1项Tr+1=叫二项式系数。9.随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动,这个常数叫做事件A发生的概率,记作p(A),0≤p(A)≤1.10.等可能事件的概率,如果一次试验中共有n种等可能出现的结果,其中事件A包含的结果有m种,那么事件A的概率为p(A)=11.互斥事件:不可能同时发生的两个事件,叫做互斥事件,也叫不相容事件。如果事件A1,A2,…,An彼此互斥,那么A1,A2,…,An中至少有一个发生的概率为p(A1+A2+…+An)=p(A1)+p(A2)+…+p(An).12.对立事件:事件A,B为互斥事件,且必有一个发生,则A,B叫对立事件,记A的对立事件为。由定义知p(A)+p()=1.13.相互独立事件:事件A(或B)是否发生对事件B(或A)发生的概率没有影响,这样的两个事件叫做相互独立事件。~~~\n~14.相互独立事件同时发生的概率:两个相互独立事件同时发生的概率,等于每个事件发生的概率的积。即p(A•B)=p(A)•p(B).若事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率为p(A1•A2•…•An)=p(A1)•p(A2)•…•p(An).15.独立重复试验:若n次重复试验中,每次试验结果的概率都不依赖于其他各次试验的结果,则称这n次试验是独立的.16.独立重复试验的概率:如果在一次试验中,某事件发生的概率为p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为pn(k)=•pk(1-p)n-k.17.离散型随机为量的分布列:如果随机试验的结果可以用一个变量来表示,那么这样的变量叫随机变量,例如一次射击命中的环数ξ就是一个随机变量,ξ可以取的值有0,1,2,…,10。如果随机变量的可能取值可以一一列出,这样的随机变量叫离散型随机变量。一般地,设离散型随机变量ξ可能取的值为x1,x2,…,xi,…,ξ取每一个值xi(i=1,2,…)的概率p(ξ=xi)=pi,则称表ξx1x2x3…xi…pp1p2p3…pi…为随机变量ξ的概率分布,简称ξ的分布列,称Eξ=x1p1+x2p2+…+xnpn+…为ξ的数学期望或平均值、均值、简称期望,称Dξ=(x1-Eξ)2•p1+(x2-Eξ)2•p2+…+(xn-Eξ)2pn+…为ξ的均方差,简称方差。叫随机变量ξ的标准差。18.二项分布:如果在一次试验中某事件发生的概率是p,那么在n次独立重复试验中,这个事件恰好发生k次的概率为p(ξ=k)=,ξ的分布列为ξ01…xi…Np……此时称ξ服从二项分布,记作ξ~B(n,p).若ξ~B(n,p),则Eξ=np,Dξ=npq,以上q=1-p.19.几何分布:在独立重复试验中,某事件第一次发生时所做试验的次数ξ也是一个随机变量,若在一次试验中该事件发生的概率为p,则p(ξ=k)=qk-1p(k=1,2,…),ξ的分布服从几何分布,Eξ=,Dξ=(q=1-p).二、方法与例题1.乘法原理。例1有2n个人参加收发电报培训,每两个人结为一对互发互收,有多少种不同的结对方式?[解]将整个结对过程分n步,第一步,考虑其中任意一个人的配对者,有2n-1种选则;这一对结好后,再从余下的2n-2人中任意确定一个。第二步考虑他的配对者,有2n-3种选择,……这样一直进行下去,经n步恰好结n对,由乘法原理,不同的结对方式有(2n-1)×(2n-3)×…×3×1=2.加法原理。例2图13-1所示中没有电流通过电流表,其原因仅因为电阻断路的可能性共有几种?~~~\n~[解]断路共分4类:1)一个电阻断路,有1种可能,只能是R4;2)有2个电阻断路,有-1=5种可能;3)3个电阻断路,有=4种;4)有4个电阻断路,有1种。从而一共有1+5+4+1=11种可能。3.插空法。例310个节目中有6个演唱4个舞蹈,要求每两个舞蹈之间至少安排一个演唱,有多少种不同的安排节目演出顺序的方式?[解]先将6个演唱节目任意排成一列有种排法,再从演唱节目之间和前后一共7个位置中选出4个安排舞蹈有种方法,故共有=604800种方式。4.映射法。例4如果从1,2,…,14中,按从小到大的顺序取出a1,a2,a3使同时满足:a2-a1≥3,a3-a2≥3,那么所有符合要求的不同取法有多少种?[解]设S={1,2,…,14},={1,2,…,10};T={(a1,a2,a3)|a1,a2,a3∈S,a2-a1≥3,a3-a2≥3},={()∈},若,令,则(a1,a2,a3)∈T,这样就建立了从到T的映射,它显然是单射,其次若(a1,a2,a3)∈T,令,则,从而此映射也是满射,因此是一一映射,所以|T|==120,所以不同取法有120种。5.贡献法。例5已知集合A={1,2,3,…,10},求A的所有非空子集的元素个数之和。[解]设所求的和为x,因为A的每个元素a,含a的A的子集有29个,所以a对x的贡献为29,又|A|=10。所以x=10×29.[另解]A的k元子集共有个,k=1,2,…,10,因此,A的子集的元素个数之和为10×29。6.容斥原理。例6由数字1,2,3组成n位数(n≥3),且在n位数中,1,2,3每一个至少出现1次,问:这样的n位数有多少个?[解]用I表示由1,2,3组成的n位数集合,则|I|=3n,用A1,A2,A3分别表示不含1,不含2,不含3的由1,2,3组成的n位数的集合,则|A1|=|A2|=|A3|=2n,|A1A2|=|A2A3|=|A1A3|=1。|A1A2A3|=0。所以由容斥原理|A1A2A3|==3×2n-3.所以满足条件的n位数有|I|-|A1A2A3|=3n-3×2n+3个。7.递推方法。例7用1,2,3三个数字来构造n位数,但不允许有两个紧挨着的1出现在n位数中,问:能构造出多少个这样的n位数?~~~\n~[解]设能构造an个符合要求的n位数,则a1=3,由乘法原理知a2=3×3-1=8.当n≥3时:1)如果n位数的第一个数字是2或3,那么这样的n位数有2an-1;2)如果n位数的第一个数字是1,那么第二位只能是2或3,这样的n位数有2an-2,所以an=2(an-1+an-2)(n≥3).这里数列{an}的特征方程为x2=2x+2,它的两根为x1=1+,x2=1-,故an=c1(1+)n+c2(1+)n,由a1=3,a2=8得,所以8.算两次。例8m,n,r∈N+,证明:①[证明]从n位太太与m位先生中选出r位的方法有种;另一方面,从这n+m人中选出k位太太与r-k位先生的方法有种,k=0,1,…,r。所以从这n+m人中选出r位的方法有种。综合两个方面,即得①式。9.母函数。例9一副三色牌共有32张,红、黄、蓝各10张,编号为1,2,…,10,另有大、小王各一张,编号均为0。从这副牌中任取若干张牌,按如下规则计算分值:每张编号为k的牌计为2k分,若它们的分值之和为2004,则称这些牌为一个“好牌”组,求好牌组的个数。[解]对于n∈{1,2,…,2004},用an表示分值之和为n的牌组的数目,则an等于函数f(x)=(1+)2•(1+)3••••…•(1+)3的展开式中xn的系数(约定|x|<1),由于f(x)=[(1+)(1+)•…•(1+)]3=3=3。而0≤2004<211,所以an等于的展开式中xn的系数,又由于=•=(1+x2+x3+…+x2k+…)[1+2x+3x2+…+(2k+1)x2k+…],所以x2k在展开式中的系数为a2k=1+3+5++(2k+1)=(k+1)2,k=1,2,…,从而,所求的“好牌”组的个数为a2004=10032=1006009.10.组合数的性质。例10证明:是奇数(k≥1).~~~\n~[证明]=令i=•pi(1≤i≤k),pi为奇数,则,它的分子、分母均为奇数,因是整数,所以它只能是若干奇数的积,即为奇数。例11对n≥2,证明:[证明]1)当n=2时,22<=6<42;2)假设n=k时,有2k<<4k,当n=k+1时,因为又<4,所以2k+1<.所以结论对一切n≥2成立。11.二项式定理的应用。例12若n∈N,n≥2,求证:[证明]首先其次因为,所以2+得证。例13证明:[证明]首先,对于每个确定的k,等式左边的每一项都是两个组合数的乘积,其中是(1+x)n-k的展开式中xm-h的系数。是(1+y)k的展开式中yk的系数。从而•就是(1+x)n-k•(1+y)k的展开式中xm-hyh的系数。于是,就是展开式中xm-hyh的系数。另一方面,==~~~\n~•=(xk-1+xk-2y+…+yk-1),上式中,xm-hyh项的系数恰为。所以12.概率问题的解法。例14如果某批产品中有a件次品和b件正品,采用有放回的抽样方式从中抽取n件产品,问:恰好有k件是次品的概率是多少?[解]把k件产品进行编号,有放回抽n次,把可能的重复排列作为基本事件,总数为(a+b)n(即所有的可能结果)。设事件A表示取出的n件产品中恰好有k件是次品,则事件A所包含的基本事件总数为•akbn-k,故所求的概率为p(A)=例15将一枚硬币掷5次,正面朝上恰好一次的概率不为0,而且与正面朝上恰好两次的概率相同,求恰好三次正面朝上的概率。[解]设每次抛硬币正面朝上的概率为p,则掷5次恰好有k次正面朝上的概率为(1-p)5-k(k=0,1,2,…,5),由题设,且0m且n∈N时,恒有|un-A|<ε成立(A为常数),则称A为数列un当n趋向于无穷大时的极限,记为,另外=A表示x大于x0且趋向于x0时f(x)极限为A,称右极限。类似地表示x小于x0且趋向于x0时f(x)的左极限。2.极限的四则运算:如果f(x)=a,g(x)=b,那么[f(x)±g(x)]=a±b,[f(x)•g(x)]=ab,3.连续:如果函数f(x)在x=x0处有定义,且f(x)存在,并且f(x)=f(x0),则称f(x)在x=x0处连续。4.最大值最小值定理:如果f(x)是闭区间[a,b]上的连续函数,那么f(x)在[a,b]上有最大值和最小值。5.导数:若函数f(x)在x0附近有定义,当自变量x在x0处取得一个增量Δx时(Δx充分小),因变量y也随之取得增量Δy(Δy=f(x0+Δx)-f(x0)).若存在,则称f(x)在x0处可导,此极限值称为f(x)在点x0处的导数(或变化率),记作(x0)或或,即。由定义知f(x)在点x0连续是f(x)在x0可导的必要条件。若f(x)在区间I上有定义,且在每一点可导,则称它在此敬意上可导。导数的几何意义是:f(x)在点x0处导数(x0)等于曲线y=f(x)在点P(x0,f(x0))处切线的斜率。6.几个常用函数的导数:(1)=0(c为常数);(2)(a为任意常数);(3)(4);(5);(6);(7);(8)7.导数的运算法则:若u(x),v(x)在x处可导,且u(x)≠0,则~~~\n~(1);(2);(3)(c为常数);(4);(5)。8.复合函数求导法:设函数y=f(u),u=(x),已知(x)在x处可导,f(u)在对应的点u(u=(x))处可导,则复合函数y=f[(x)]在点x处可导,且(f[(x)]=.9.导数与函数的性质:(1)若f(x)在区间I上可导,则f(x)在I上连续;(2)若对一切x∈(a,b)有,则f(x)在(a,b)单调递增;(3)若对一切x∈(a,b)有,则f(x)在(a,b)单调递减。10.极值的必要条件:若函数f(x)在x0处可导,且在x0处取得极值,则11.极值的第一充分条件:设f(x)在x0处连续,在x0邻域(x0-δ,x0+δ)内可导,(1)若当x∈(x-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极小值;(2)若当x∈(x0-δ,x0)时,当x∈(x0,x0+δ)时,则f(x)在x0处取得极大值。12.极值的第二充分条件:设f(x)在x0的某领域(x0-δ,x0+δ)内一阶可导,在x=x0处二阶可导,且。(1)若,则f(x)在x0处取得极小值;(2)若,则f(x)在x0处取得极大值。13.罗尔中值定理:若函数f(x)在[a,b]上连续,在(a,b)上可导,且f(a)=f(b),则存在ξ∈(a,b),使[证明]若当x∈(a,b),f(x)≡f(a),则对任意x∈(a,b),.若当x∈(a,b)时,f(x)≠f(a),因为f(x)在[a,b]上连续,所以f(x)在[a,b]上有最大值和最小值,必有一个不等于f(a),不妨设最大值m>f(a)且f(c)=m,则c∈(a,b),且f(c)为最大值,故,综上得证。14.Lagrange中值定理:若f(x)在[a,b]上连续,在(a,b)上可导,则存在ξ∈(a,b),使[证明]令F(x)=f(x)-,则F(x)在[a,b]上连续,在(a,b)上可导,且~~~\n~F(a)=F(b),所以由13知存在ξ∈(a,b)使=0,即15.曲线凸性的充分条件:设函数f(x)在开区间I内具有二阶导数,(1)如果对任意x∈I,,则曲线y=f(x)在I内是下凸的;(2)如果对任意x∈I,,则y=f(x)在I内是上凸的。通常称上凸函数为凸函数,下凸函数为凹函数。16.琴生不等式:设α1,α2,…,αn∈R+,α1+α2+…+αn=1。(1)若f(x)是[a,b]上的凸函数,则x1,x2,…,xn∈[a,b]有f(a1x1+a2x2+…+anxn)≤a1f(x1)+a2f(x2)+…+anf(xn).二、方法与例题1.极限的求法。例1求下列极限:(1);(2);(3);(4)[解](1)=;(2)当a>1时,当00且)。[解](1)3cos(3x+1).(2)(3)(4)(5)5.用导数讨论函数的单调性。例6设a>0,求函数f(x)=-ln(x+a)(x∈(0,+∞))的单调区间。[解],因为x>0,a>0,所以x2+(2a-4)x+a2>0;x2+(2a-4)x+a+<0.(1)当a>1时,对所有x>0,有x2+(2a-4)x+a2>0,即(x)>0,f(x)在(0,+∞)~~~\n~上单调递增;(2)当a=1时,对x≠1,有x2+(2a-4)x+a2>0,即,所以f(x)在(0,1)内单调递增,在(1,+∞)内递增,又f(x)在x=1处连续,因此f(x)在(0,+∞)内递增;(3)当00,解得x<2-a-或x>2-a+,因此,f(x)在(0,2-a-)内单调递增,在(2-a+,+∞)内也单调递增,而当2-a-2x.[证明]设f(x)=sinx+tanx-2x,则=cosx+sec2x-2,当时,(因为0f(0)=0,即sinx+tanx>2x.7.利用导数讨论极值。例8设f(x)=alnx+bx2+x在x1=1和x2=2处都取得极值,试求a与b的值,并指出这时f(x)在x1与x2处是取得极大值还是极小值。[解]因为f(x)在(0,+∞)上连续,可导,又f(x)在x1=1,x2=2处取得极值,所以,又+2bx+1,所以解得所以.所以当x∈(0,1)时,,所以f(x)在(0,1]上递减;当x∈(1,2)时,,所以f(x)在[1,2]上递增;当x∈(2,+∞)时,,所以f(x)在[2,+∞)上递减。综上可知f(x)在x1=1处取得极小值,在x2=2处取得极大值。例9设x∈[0,π],y∈[0,1],试求函数f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x的最小值。~~~\n~[解]首先,当x∈[0,π],y∈[0,1]时,f(x,y)=(2y-1)sinx+(1-y)sin(1-y)x=(1-y)2x=(1-y)2x,令g(x)=,当时,因为cosx>0,tanx>x,所以;当时,因为cosx<0,tanx<0,x-tanx>0,所以;又因为g(x)在(0,π)上连续,所以g(x)在(0,π)上单调递减。又因为0<(1-y)xg(x),即,又因为,所以当x∈(0,π),y∈(0,1)时,f(x,y)>0.其次,当x=0时,f(x,y)=0;当x=π时,f(x,y)=(1-y)sin(1-y)π≥0.当y=1时,f(x,y)=-sinx+sinx=0;当y=1时,f(x,y)=sinx≥0.综上,当且仅当x=0或y=0或x=π且y=1时,f(x,y)取最小值0。第十五章复数一、基础知识1.复数的定义:设i为方程x2=-1的根,i称为虚数单位,由i与实数进行加、减、乘、除等运算。便产生形如a+bi(a,b∈R)的数,称为复数。所有复数构成的集合称复数集。通常用C来表示。2.复数的几种形式。对任意复数z=a+bi(a,b∈R),a称实部记作Re(z),b称虚部记作Im(z).z=ai称为代数形式,它由实部、虚部两部分构成;若将(a,b)作为坐标平面内点的坐标,那么z与坐标平面唯一一个点相对应,从而可以建立复数集与坐标平面内所有的点构成的集合之间的一一映射。因此复数可以用点来表示,表示复数的平面称为复平面,x轴称为实轴,y轴去掉原点称为虚轴,点称为复数的几何形式;如果将(a,b)作为向量的坐标,复数z又对应唯一一个向量。因此坐标平面内的向量也是复数的一种表示形式,称为向量形式;另外设z对应复平面内的点Z,见图15-1,连接OZ,设∠xOZ=θ,|OZ|=r,则a=rcosθ,b=rsinθ,所以z=r(cosθ+isinθ),这种形式叫做三角形式。若z=r(cosθ+isinθ),则θ称为z的辐角。若0≤θ<2π,则θ称为z的辐角主值,记作θ=Arg(z).r称为z的模,也记作|z|,由勾股定理知|z|=.如果用eiθ表示cosθ+isinθ,则z=reiθ,称为复数的指数形式。3.共轭与模,若z=a+bi,(a,b∈R),则a-bi称为z~~~\n~的共轭复数。模与共轭的性质有:(1);(2);(3);(4);(5);(6);(7)||z1|-|z2||≤|z1±z2|≤|z1|+|z2|;(8)|z1+z2|2+|z1-z2|2=2|z1|2+2|z2|2;(9)若|z|=1,则。4.复数的运算法则:(1)按代数形式运算加、减、乘、除运算法则与实数范围内一致,运算结果可以通过乘以共轭复数将分母分为实数;(2)按向量形式,加、减法满足平行四边形和三角形法则;(3)按三角形式,若z1=r1(cosθ1+isinθ1),z2=r2(cosθ2+isinθ2),则z1••z2=r1r2[cos(θ1+θ2)+isin(θ1+θ2)];若[cos(θ1-θ2)+isin(θ1-θ2)],用指数形式记为z1z2=r1r2ei(θ1+θ2),5.棣莫弗定理:[r(cosθ+isinθ)]n=rn(cosnθ+isinnθ).6.开方:若r(cosθ+isinθ),则,k=0,1,2,…,n-1。7.单位根:若wn=1,则称w为1的一个n次单位根,简称单位根,记Z1=,则全部单位根可表示为1,,.单位根的基本性质有(这里记,k=1,2,…,n-1):(1)对任意整数k,若k=nq+r,q∈Z,0≤r≤n-1,有Znq+r=Zr;(2)对任意整数m,当n≥2时,有=特别1+Z1+Z2+…+Zn-1=0;(3)xn-1+xn-2+…+x+1=(x-Z1)(x-Z2)…(x-Zn-1)=(x-Z1)(x-)…(x-).8.复数相等的充要条件:(1)两个复数实部和虚部分别对应相等;(2)两个复数的模和辐角主值分别相等。9.复数z是实数的充要条件是z=;z是纯虚数的充要条件是:z+=0(且z≠0).10.代数基本定理:在复数范围内,一元n次方程至少有一个根。11.实系数方程虚根成对定理:实系数一元n次方程的虚根成对出现,即若z=a+bi(b≠0)是方程的一个根,则=a-bi也是一个根。12.若a,b,c∈R,a≠0,则关于x的方程ax2+bx+c=0,当Δ=b2-4ac<0时方程的根为二、方法与例题~~~\n~1.模的应用。例1求证:当n∈N+时,方程(z+1)2n+(z-1)2n=0只有纯虚根。[证明]若z是方程的根,则(z+1)2n=-(z-1)2n,所以|(z+1)2n|=|-(z-1)2n|,即|z+1|2=|z-1|2,即(z+1)(+1)=(z-1)(-1),化简得z+=0,又z=0不是方程的根,所以z是纯虚数。例2设f(z)=z2+az+b,a,b为复数,对一切|z|=1,有|f(z)|=1,求a,b的值。[解]因为4=(1+a+b)+(1-a+b)-(-1+ai+b)-(-1-ai+b)=|f(1)+f(-1)-f(i)-f(-i)|≥|f(1)|+|f(-1)|+|f(i)|+|f(-i)|=4,其中等号成立。所以f(1),f(-1),-f(i),-f(-i)四个向量方向相同,且模相等。所以f(1)=f(-1)=-f(i)=-f(-i),解得a=b=0.2.复数相等。例3设λ∈R,若二次方程(1-i)x2+(λ+i)x+1+λi=0有两个虚根,求λ满足的充要条件。[解]若方程有实根,则方程组有实根,由方程组得(λ+1)x+λ+1=0.若λ=-1,则方程x2-x+1=0中Δ<0无实根,所以λ≠-1。所以x=-1,λ=2.所以当λ≠2时,方程无实根。所以方程有两个虚根的充要条件为λ≠2。3.三角形式的应用。例4设n≤2000,n∈N,且存在θ满足(sinθ+icosθ)n=sinnθ+icosnθ,那么这样的n有多少个?[解]由题设得,所以n=4k+1.又因为0≤n≤2000,所以1≤k≤500,所以这样的n有500个。4.二项式定理的应用。例5计算:(1);(2)[解](1+i)100=[(1+i)2]50=(2i)50=-250,由二项式定理(1+i)100==)+()i,比较实部和虚部,得=-250,=0。5.复数乘法的几何意义。例6以定长线段BC为一边任作ΔABC,分别以AB,AC为腰,B,C为直角顶点向外作等腰直角ΔABM、等腰直角ΔACN。求证:MN的中点为定点。[证明]设|BC|=2a,以BC中点O为原点,BC为x轴,建立直角坐标系,确定复平面,则B,C对应的复数为-a,a,点A,M,N对应的复数为z1,z2,z3,,由复数乘法的几何意义得:,①,②由①~~~\n~+②得z2+z3=i(z1+a)-i(z1-a)=2ai.设MN的中点为P,对应的复数z=,为定值,所以MN的中点P为定点。例7设A,B,C,D为平面上任意四点,求证:AB•AD+BC•AD≥AC•BD。[证明]用A,B,C,D表示它们对应的复数,则(A-B)(C-D)+(B-C)(A-D)=(A-C)(B-D),因为|A-B|•|C-D|+|B-C|•|A-D|≥(A-B)(C-D)+(B-C)(A-D).所以|A-B|•|C-D|+|B-C|•|A-D|≥|A-C|•|B-D|,“=”成立当且仅当,即=π,即A,B,C,D共圆时成立。不等式得证。6.复数与轨迹。例8ΔABC的顶点A表示的复数为3i,底边BC在实轴上滑动,且|BC|=2,求ΔABC的外心轨迹。[解]设外心M对应的复数为z=x+yi(x,y∈R),B,C点对应的复数分别是b,b+2.因为外心M是三边垂直平分线的交点,而AB的垂直平分线方程为|z-b|=|z-3i|,BC的垂直平分线的方程为|z-b|=|z-b-2|,所以点M对应的复数z满足|z-b|=|z-3i|=|z-b-2|,消去b解得所以ΔABC的外心轨迹是轨物线。7.复数与三角。例9已知cosα+cosβ+cosγ=sinα+sinβ+sinγ=0,求证:cos2α+cos2β+cos2γ=0。[证明]令z1=cosα+isinα,z2=cosβ+isinβ,z3=cosγ+isinγ,则z1+z2+z3=0。所以又因为|zi|=1,i=1,2,3.所以zi•=1,即由z1+z2+z3=0得①又所以所以cos2α+cos2β+cos2γ+i(sin2α+sin2β+sin2γ)=0.所以cos2α+cos2β+cos2γ=0。例10求和:S=cos200+2cos400+…+18cos18×200.[解]令w=cos200+isin200,则w18=1,令P=sin200+2sin400+…+18sin18×200,则S+iP=w+2w2+…+18w18.①由①×w得w(S+iP)=w2+2w3+…+17w18+18w19,②由①-②得(1-w)(S+iP)=w+w2+…+w18-18w19=,所以S+iP=~~~\n~,所以8.复数与多项式。例11已知f(z)=c0zn+c1zn-1+…+cn-1z+cn是n次复系数多项式(c0≠0).求证:一定存在一个复数z0,|z0|≤1,并且|f(z0)|≥|c0|+|cn|.[证明]记c0zn+c1zn-1+…+cn-1z=g(z),令=Arg(cn)-Arg(z0),则方程g(Z)-c0eiθ=0为n次方程,其必有n个根,设为z1,z2,…,zn,从而g(z)-c0eiθ=(z-z1)(z-z2)•…•(z-zn)c0,令z=0得-c0eiθ=(-1)nz1z2…znc0,取模得|z1z2…zn|=1。所以z1,z2,…,zn中必有一个zi使得|zi|≤1,从而f(zi)=g(zi)+cn=c0eiθ=cn,所以|f(zi)|=|c0eiθ+cn|=|c0|+|cn|.9.单位根的应用。例12证明:自⊙O上任意一点p到正多边形A1A2…An各个顶点的距离的平方和为定值。[证明]取此圆为单位圆,O为原点,射线OAn为实轴正半轴,建立复平面,顶点A1对应复数设为,则顶点A2A3…An对应复数分别为ε2,ε3,…,εn.设点p对应复数z,则|z|=1,且=2n-=2n-命题得证。10.复数与几何。例13如图15-2所示,在四边形ABCD内存在一点P,使得ΔPAB,ΔPCD都是以P为直角顶点的等腰直角三角形。求证:必存在另一点Q,使得ΔQBC,ΔQDA也都是以Q为直角顶点的等腰直角三角形。[证明]以P为原点建立复平面,并用A,B,C,D,P,Q表示它们对应的复数,由题设及复数乘法的几何意义知D=iC,B=iA;取,则C-Q=i(B-Q),则ΔBCQ为等腰直角三角形;又由C-Q=i(B-Q)得,即A-Q=i(D-Q),所以ΔADQ也为等腰直角三角形且以Q为直角顶点。综上命题得证。例14平面上给定ΔA1A2A3及点p0,定义As=As-3,s≥4,构造点列p0,p1,p2,…,使得pk+1为绕中心Ak+1顺时针旋转1200时pk所到达的位置,k=0,1,2,…,若p1986=p0.证明:ΔA1A2A3为等边三角形。[证明]令u=,由题设,约定用点同时表示它们对应的复数,取给定平面为复平面,则p1=(1+u)A1-up0,p2=(1+u)A2-up1,p3=(1+u)A3-up2,①×u2+②×(-u)得p3=(1+u)(A3-uA2+u2A1)+p0=w+p0,w为与p0无关的常数。同理得p6=w+p3=2w+p0,…,p1986=662w+p0=p0,所以w=0,从而A3-uA2+u2A1=0.由u2=u-1得A3-A1=(A2-A1)u,这说明ΔA1A2A3为正三角形。第十六章平面几何一、常用定理(仅给出定理,证明请读者完成)~~~\n~梅涅劳斯定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三点共线,则梅涅劳斯定理的逆定理条件同上,若则三点共线。塞瓦定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若三线平行或共点,则塞瓦定理的逆定理设分别是ΔABC的三边BC,CA,AB或其延长线上的点,若则三线共点或互相平行。角元形式的塞瓦定理分别是ΔABC的三边BC,CA,AB所在直线上的点,则平行或共点的充要条件是广义托勒密定理设ABCD为任意凸四边形,则AB•CD+BC•AD≥AC•BD,当且仅当A,B,C,D四点共圆时取等号。斯特瓦特定理设P为ΔABC的边BC上任意一点,P不同于B,C,则有AP2=AB2•+AC2•-BP•PC.西姆松定理过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。西姆松定理的逆定理若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。九点圆定理三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。蒙日定理三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴)欧拉定理ΔABC的外心O,垂心H,重心G三点共线,且二、方法与例题1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。例1在ΔABC中,∠ABC=700,∠ACB=300,P,Q为ΔABC内部两点,∠QBC=∠QCB=100,∠PBQ=∠PCB=200,求证:A,P,Q三点共线。[证明]设直线CP交AQ于P1,直线BP交AQ于P2,因为∠ACP=∠PCQ=100,所以,①在ΔABP,ΔBPQ,ΔABC中由正弦定理有,②,③④~~~\n~由②,③,④得。又因为P1,P2同在线段AQ上,所以P1,P2重合,又BP与CP仅有一个交点,所以P1,P2即为P,所以A,P,Q共线。2.面积法。例2见图16-1,◇ABCD中,E,F分别是CD,BC上的点,且BE=DF,BE交DF于P,求证:AP为∠BPD的平分线。[证明]设A点到BE,DF距离分别为h1,h2,则又因为S◇ABCD=SΔADF,又BE=DF。所以h1=h2,所以PA为∠BPD的平分线。3.几何变换。例3(蝴蝶定理)见图16-2,AB是⊙O的一条弦,M为AB中点,CD,EF为过M的任意弦,CF,DE分别交AB于P,Q。求证:PM=MQ。[证明]由题设OMAB。不妨设。作D关于直线OM的对称点。连结,则要证PM=MQ,只需证,又∠MDQ=∠PFM,所以只需证F,P,M,共圆。因为∠=1800-=1800-∠=1800-∠。(因为OM。AB//)所以F,P,M,四点共圆。所以Δ≌ΔMDQ。所以MP=MQ。例4平面上每一点都以红、蓝两色之一染色,证明:存在这样的两个相似三角形,它们的相似比为1995,而且每个三角形三个顶点同色。[证明]在平面上作两个同心圆,半径分别为1和1995,因为小圆上每一点都染以红、蓝两色之一,所以小圆上必有五个点同色,设此五点为A,B,C,D,E,过这两点作半径并将半径延长分别交大圆于A1,B1,C1,D1,E1,由抽屉原理知这五点中必有三点同色,不妨设为A1,B1,C1,则ΔABC与ΔA1B1C1都是顶点同色的三角形,且相似比为1995。4.三角法。例5设AD,BE与CF为ΔABC的内角平分线,D,E,F在ΔABC的边上,如果∠EDF=900,求∠BAC的所有可能的值。[解]见图16-3,记∠ADE=α,∠EDC=β,由题设∠FDA=-α,∠BDF=-β,由正弦定理:,得,又由角平分线定理有,又,所以,~~~\n~化简得,同理,即所以,所以sinβcosα-cosβsinα=sin(β-α)=0.又-π<β-α<π,所以β=α。所以,所以A=π。5.向量法。例6设P是ΔABC所在平面上的一点,G是ΔABC的重心,求证:PA+PB+PC>3PG.[证明]因为,又G为ΔABC重心,所以(事实上设AG交BC于E,则,所以)所以,所以又因为不全共线,上式“=”不能成立,所以PA+PB+PC>3PG。6.解析法。例7H是ΔABC的垂心,P是任意一点,HLPA,交PA于L,交BC于X,HMPB,交PB于M,交CA于Y,HNPC交PC于N,交AB于Z,求证:X,Y,Z三点共线。[解]以H为原点,取不与条件中任何直线垂直的两条直线为x轴和y轴,建立直角坐标系,用(xk,yk)表示点k对应的坐标,则直线PA的斜率为,直线HL斜率为,直线HL的方程为x(xP-xA)+y(yP-yA)=0.又直线HA的斜率为,所以直线BC的斜率为,直线BC的方程为xxA+yyA=xAxB+yAyB,②又点C在直线BC上,所以xCxA+yCyA=xAxB+yAyB.同理可得xBxC+yByC=xAxB+yAyB=xAxC+yAyC.又因为X是BC与HL的交点,所以点X坐标满足①式和②式,所以点X坐标满足xxP+yyP=xAxB+yAyB.④同理点Y坐标满足xxP+yyP=xBxC+yByC.⑤点Z坐标满足xxP+yyP=xCxA+yCyA.由③知④,⑤,⑥表示同一直线方程,故X,Y,Z三点共线。7.四点共圆。例8见图16-5,直线l与⊙O相离,P为l上任意一点,PA,PB为圆的两条切线,A,B为切点,求证:直线AB过定点。[证明]过O作OCl于C,连结OA,OB,BC,OP,设OP交AB于M,则OPAB,又因为OAPA,OBPB,OCPC。所以A,B,C都在以OP为直径的圆上,即O,A,P,C,B五点共圆。AB与OC是此圆两条相交弦,设交点为Q,又因为OPAB,OCCP,~~~\n~所以P,M,Q,C四点共圆,所以OM•OP=OQ•OC。由射影定理OA2=OM•OP,所以OA2=OQ•OC,所以OQ=(定值)。所以Q为定点,即直线AB过定点。第十七章整数问题一、常用定义定理1.整除:设a,b∈Z,a≠0,如果存在q∈Z使得b=aq,那么称b可被a整除,记作a|b,且称b是a的倍数,a是b的约数。b不能被a整除,记作ab.2.带余数除法:设a,b是两个给定的整数,a≠0,那么,一定存在唯一一对整数q与r,满足b=aq+r,0≤r<|a|,当r=0时a|b。3.辗转相除法:设u0,u1是给定的两个整数,u1≠0,u1u0,由2可得下面k+1个等式:u0=q0u1+u2,01且n为整数,则,其中pj(j=1,2,…,k)是质数(或称素数),且在不计次序的意义下,表示是唯一的。6.同余:设m≠0,若m|(a-b),即a-b=km,则称a与b模同m同余,记为a≡b(modm),也称b是a对模m的剩余。7.完全剩余系:一组数y1,y2,…,ys满足:对任意整数a有且仅有一个yj是a对模m的剩余,即a≡yj(modm),则y1,y2,…,ys称为模m的完全剩余系。8.Fermat小定理:若p为素数,p>a,(a,p)=1,则ap-1≡1(modp),且对任意整数a,有ap≡a(modp).9.若(a,m)=1,则≡1(modm),(m)称欧拉函数。10.(欧拉函数值的计算公式)若,则(m)=11.(孙子定理)设m1,m2,…,mk是k个两两互质的正整数,则同余组:x≡b1(modm1),x≡b2(modm2),…,x≡bk(modmk)有唯一解,x≡M1b1+M2b2+…+Mkbk(modM),其中M=m1m2mk;=,i=1,2,…,k;≡1(modmi),i=1,2,…,k.二、方法与例题~~~\n~1.奇偶分析法。例1有n个整数,它们的和为0,乘积为n,(n>1),求证:4|n。[证明]设这n个整数为a1,a2,…,an,则a1,a2,…,an=n,①a1+a2+…+an=0。②首先n为偶数,否则a1,a2,…,an均为奇数,奇数个奇数的和应为奇数且不为0,与②矛盾,所以n为偶数。所以a1,a2,…,an中必有偶数,如果a1,a2,…,an中仅有一个偶数,则a1,a2,…,an中还有奇数个奇数,从而a1+a2+…+an也为奇数与②矛盾,所以a1,a2,…,an中必有至少2个偶数。所以4|n.2.不等分析法。例2试求所有的正整数n,使方程x3+y3+z3=nx2y2z2有正整数解。解设x,y,z为其正整数解,不妨设x≤y≤z,则由题设z2|(x3+y3),所以z2≤x3+y3,但x3≤xz2,y3≤yz2,因而z=nx2y2-≥nx2y2-(x+y),故x3+y3≥z2≥[nx2y2-(x+y)]2,所以n2x4y4≤2nx2y2(x+y)+x3+y3,所以nxy<。若x≥2,则4≤nxy<≤3,矛盾。所以x=1,所以ny<,此式当且仅当y≤3时成立。又z2|(x3+y3),即z2|(1+y3),所以只有y=1,z=1或y=2,z=3,代入原方程得n=1或3。3.无穷递降法。例3确定并证明方程a2+b2+c2=a2b2的所有整数解。解首先(a,b,c)=(0,0,0)是方程的整数解,下证该方程只有这一组整数解。假设(a1,b1,c1)是方程的另一组整数解,且a1,b1,c1不全为0,不妨设a1≥0,b1≥0,c1≥0且,由≡1或0(mod4)知a1,b1,c1都是偶数(否则(mod4)),从而是方程x2+y2+z2=2x2y2的一组整数解,且不全为0,同理可知也都是偶数为方程x2+y2+z2=24x2y2的解。这一过程可以无限进行下去,另一方面a1,b1,c1为有限的整数,必存在k∈N,使2k>a1,2k>b1,2k>c1,从而不是整数,矛盾。所以该方程仅有一组整数解(0,0,0).4.特殊模法。例4证明:存在无穷多个正整数,它们不能表示成少于10个奇数的平方和。[证明]考虑形如n=72k+66,k∈N的正整数,若,其中xi为奇数,i=1,2,…,s且1≤s≤9。因为n≡2(mod8),又≡1(mod8),所以只有s=2.所以~~~\n~,又因为≡2或0(mod3),且3|n,所以3|x1且3|x2,所以9|n。但n=72k+66≡3(mod9),矛盾。所以n不能表示成少于10个奇数的平方和,且这样的n有无穷多个。5.最小数原理。例5证明:方程x4+y4=z2没有正整数解。[证明]假设原方程有一组正整数解(x0,y0,z0),并且z0是所有正整数解z中最小的。因此,,则a2-b2,=2ab,z0=a2+b2,其中(a,b)=1,a,b一奇一偶。假设a为偶数,b为奇数,那么(mod4),而(mod4),矛盾,所以a为奇数,b为偶数。于是,由得x0=p2-q2,b=2pq,a=p2+q2(这里(p,q)=1,p>q>0,p,q为一奇一偶)。从而推得,因为p,q,p2+q2两两互质,因此它们必须都是某整数的平方,即p=r2,q=s2,p2+q2=t2,从而r4+s4=t2,即(r,s,t)也是原方程的解,且有t1,n>1,因为是整数,所以也是整数,所以m,n是对称的,不妨设m≥n,ⅰ)若m=n,则为整数,所以n=2,m=2.ⅱ)若m>n,因为n3+1≡1(modn),mn-1≡-1(modn),所以≡-1(modn).所以存在k∈N,使kn-1=,又kn-1=所以(k-1)n<1+,所以k=1,所以n=1=,所以所以n-1=1或2,所以(m,n)=(5,3)或(5,2).~~~\n~同理当m1983(个)。这是因为T中的k位数的个数相当于用0,1这两个数在k-1个位置上可重复的全排列数(首位必须是1),即2k-1,k=1,2,…,11.(2)T中最大的整数是1+3+32+…+310=88573<105。(3)T中任意三个数不组成等差排列的三个连续项。否则,设x,y,z∈T,x+z=2y,则2y必只含0和2,从而x和z必定位位相同,进而x=y=z,这显然是矛盾的。第十八章组合1.抽屉原理。例1设整数n≥4,a1,a2,…,an是区间(0,2n)内n个不同的整数,证明:存在集合{a1,a2,…,an}的一个子集,它的所有元素之和能被2n整除。[证明](1)若n{a1,a2,…,an},则n个不同的数属于n-1个集合{1,2n-1},{2,2n-2},…,{n-1,n+1}。由抽屉原理知其中必存在两个数ai,aj(i≠j)属于同一集合,从而ai+aj=2n被2n整除;(2)若n∈{a1,a2,…,an},不妨设an=n,从a1,a2,…,an-1(n-1≥3)中任意取3个数ai,aj,ak(ai,0)不被n整除,考虑n个数a1,a2,a1+a2,a1+a2+a3,…,a1+a2+…+an-1。ⅰ)若这n个数中有一个被n整除,设此数等于kn,若k为偶数,则结论成立;若k为奇数,则加上an=n知结论成立。ⅱ)若这n个数中没有一个被n整除,则它们除以n的余数只能取1,2,…,n-1这n-1个值,由抽屉原理知其中必有两个数除以n的余数相同,它们之差被n整除,而a2-a1不被n整除,故这个差必为ai,aj,ak-1中若干个数之和,同ⅰ)可知结论成立。2.极端原理。例2在n×n的方格表的每个小方格内写有一个非负整数,并且在某一行和某一列的交叉点处如果写有0,那么该行与该列所填的所有数之和不小于n。证明:表中所有数之和不小于。[证明]计算各行的和、各列的和,这2n个和中必有最小的,不妨设第m行的和最小,记和为k,则该行中至少有n-k个0,这n-k个0所在的各列的和都不小于n-k,从而这n-k列的数的总和不小于(n-k)2,其余各列的数的总和不小于k2,从而表中所有数的总和不小于(n-k)2+k2≥3.不变量原理。俗话说,变化的是现象,不变的是本质,某一事情反复地进行,寻找不变量是一种策略。例3设正整数n是奇数,在黑板上写下数1,2,…,2n,然后取其中任意两个数a,b,~~~\n~擦去这两个数,并写上|a-b|。证明:最后留下的是一个奇数。[证明]设S是黑板上所有数的和,开始时和数是S=1+2+…+2n=n(2n+1),这是一个奇数,因为|a-b|与a+b有相同的奇偶性,故整个变化过程中S的奇偶性不变,故最后结果为奇数。例4数a1,a2,…,an中每一个是1或-1,并且有S=a1a2a3a4+a2a3a4a5+…+ana1a2a3=0.证明:4|n.[证明]如果把a1,a2,…,an中任意一个ai换成-ai,因为有4个循环相邻的项都改变符号,S模4并不改变,开始时S=0,即S≡0,即S≡0(mod4)。经有限次变号可将每个ai都变成1,而始终有S≡0(mod4),从而有n≡0(mod4),所以4|n。4.构造法。例5是否存在一个无穷正整数数列a1,