- 248.50 KB
- 2022-07-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
智浪教育—普惠英才文库高中数学竞赛精华一、三角函数常用公式由于是讲竞赛,这里就不再重复过于基础的东西,例如六种三角函数之间的转换,两角和与差的三角函数,二倍角公式等等。但是由于现在的教材中常用公式删得太多,有些还是不能不写。先从最基础的开始(这些必须熟练掌握):半角公式积化和差和差化积万能公式三倍角公式\n智浪教育—普惠英才文库二、某些特殊角的三角函数值除了课本中的以外,还有一些sincostan三、三角函数求值给出一个复杂的式子,要求化简。这样的题目经常考,而且一般化出来都是一个具体值。要熟练应用上面的常用式子,个人认为和差化积、积化和差是竞赛中最常用的,如果看到一些不常用的角,应当考虑用和差化积、积化和差,一般情况下直接使用不了的时候,可以考虑先乘一个三角函数,然后利用积化和差化简,最后再把这个三角函数除下去举个例子求值:提示:乘以,化简后再除下去。求值:来个复杂的设n为正整数,求证另外这个题目也可以用复数的知识来解决,在复数的那一章节里再讲四、三角不等式证明最常用的公式一般就是:x为锐角,则;还有就是正余弦的有界性。例求证:x为锐角,sinx+tanx<2x\n智浪教育—普惠英才文库设,且,求乘积的最大值和最小值。注:这个题目比较难数列关于数列的知识可以说怎么学怎么有,还好我们只是来了解竞赛中最基本的一些东西,不然我可写不完了。J1给递推式求通项公式(1)常见形式即一般求解方法注:以下各种情况只需掌握方法即可,没有必要记住结果,否则数学就变成无意义的机械劳动了。①若p=1,则显然是以a1为首项,q为公差的等差数列,若p≠1,则两边同时加上,变为显然是以为首项,p为公比的等比数列②,其中f(n)不是常数若p=1,则显然an=a1+,n≥2若p≠1,则两边同时除以pn+1,变形为利用叠加法易得,从而注:还有一些递推公式也可以用一般方法解决,但是其他情况我们一般使用其他更方便的方法,下面我们再介绍一些属于数学竞赛中的“高级方法”。(2)不动点法当f(x)=x时,x的取值称为不动点,不动点是我们在竞赛中解决递推式的基本方法。典型例子:注:我感觉一般非用不动点不可的也就这个了,所以记住它的解法就足够了。我们如果用一般方法解决此题也不是不可以,只是又要待定系数,又要求倒数之类的,太复杂,如果用不动点的方法,此题就很容易了令,即,令此方程的两个根为x1,x2,\n智浪教育—普惠英才文库若x1=x2则有其中k可以用待定系数法求解,然后再利用等差数列通项公式求解。注:如果有能力,可以将p的表达式记住,p=若x1≠x2则有其中k可以用待定系数法求解,然后再利用等比数列通项公式求解。注:如果有能力,可以将q的表达式记住,q=(3)特征根法特征根法是专用来求线性递推式的好方法。先来了解特征方程的一般例子,通过这个来学会使用特征方程。①特征方程为x2=px+q,令其两根为x1,x2则其通项公式为,A、B用待定系数法求得。②特征方程为x3=px2+qx+r,令其三根为x1,x2,x3则其通项公式为,A、B、C用待定系数法求得。注:通过这两个例子我们应当能够得到特征方程解线性递归式的一般方法,可以试着写出对于一般线性递归式的特征方程和通项公式,鉴于3次以上的方程求解比较困难,且竞赛中也不多见,我们仅需掌握这两种就够了。(4)数学归纳法简单说就是根据前几项的规律猜出一个结果然后用数学归纳法去证。这样的题虽说有不少但是要提高不完全归纳的水平实在不易。大家应当都会用数学归纳法,因此这里不详细说了。但需要记得有这样一个方法,适当的时候可以拿出来用。(5)联系三角函数三角函数是个很奇妙的东西,看看下面的例子看起来似乎摸不着头脑,只需联系正切二倍角公式,马上就迎刃而解。注:这需要我们对三角函数中的各种公式用得很熟,这样的题目竞赛书中能见到很多。例\n智浪教育—普惠英才文库数列定义如下:,,求通项注:这个不太好看出来,试试大胆的猜想,然后去验证。(6)迭代法先了解迭代的含义f右上角的数字叫做迭代指数,其中是表示的反函数再来了解复合的表示,如果设,则,就可以将求F(x)的迭代转变为求f(x)的迭代。这个公式很容易证明。使用迭代法求值的基础。而在数列中我们可以将递推式看成,因此求通项和求函数迭代就是一样的了。我们尽量找到好的g(x),以便让f(x)变得足够简单,这样求f(x)的n次迭代就很容易得到了。从而再得到F(x)的n次迭代式即为通项公式。练习,试求数列的通项公式。注:此题比较综合,需熟练掌握各种求通项公式的常用方法。下面是我的一个原创题目已知数列满足,,求该数列的通项公式。2数列求和求和的方法很多,像裂项求和,错位相减等等,这些知识就算单纯应付高考也应该都掌握了,这里不再赘述。主要写竞赛中应当掌握的方法——阿贝尔恒等式。阿贝尔(Abel)恒等式有多种形式,最一般的是其中注:个人认为,掌握这一个就够了,当然还有更为一般的形式,但是不容易记,也不常用。Abel恒等式就是给出了一个新的求和方法。很多时候能简化不少。\n智浪教育—普惠英才文库例:假设,且,求证:计数问题1抽屉原则我第一次接触抽屉原则,是在一本奥赛书的答案上,有一步骤是:由抽屉原则可得……,于是我就问同学,什么是抽屉原则,同学告诉我,三个苹果放进两个抽屉,必有一个抽屉里至少有两个苹果。后来才发现,抽屉原则不只是这么简单的,它有着广泛的应用以及许多种不同的变形,下面简单介绍一下抽屉原则。抽屉原则的常见形式一,把n+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有两个物体。二,把mn+k(k≥1)个物体以任意方式全部放入n个抽屉中,一定存在一个抽屉中至少有m+1个物体。三,把m1+m2+…+mn+k(k≥1)个物体以任意方式全部放入n个抽屉中,那么后在一个抽屉里至少放入了m1+1个物体,或在第二个抽屉里至少放入了m2+1个物体,……,或在第n个抽屉里至少放入了mn+1个物体四,把m个物体以任意方式全部放入n个抽屉中,有两种情况:①当n|m时(n|m表示n整除m),一定存在一个抽屉中至少放入了个物体;②当n不能整除m时,一定存在一个抽屉中至少放入了[]+1个物体([x]表示不超过x的最大整数)五,把无穷多个元素分成有限类,则至少有一类包含无穷多个元素。注:背下来上面的几种形式没有必要,但应当清楚这些形式虽然不同,却都表示的一个意思。理解它们的含义最重要。在各种竞赛题中,往往抽屉原则考得不少,但一般不会很明显的让人看出来,构造抽屉才是抽屉原则中最难的东西。一般来说,题目中一旦出现了“总有”“至少有”“总存在”之类的词,就暗示着我们:要构造抽屉了。例:从自然数1,2,3,…99,100这100个数中随意取出51个数来,求证:其中一定有两个数,它们中的一个是另一个的倍数.用2种颜色涂5×5共25个小方格,证明:必有一个四角同色的矩形出现.2容斥原理容斥原理常常使用,其实说简单点,就是从多的往下减,减过头了在加回来,又加多了再减,减多了再加……,最终得到正确结果。对于计数中容易出现重复的题目,我们常常采用容斥原理,去掉重复的情况。容斥原理基本形式:\n智浪教育—普惠英才文库其中|A|表示集合A中元素的个数。例:在不大于2004的正整数中,至少可被3,5,7之一整除?由数字1,2,3,4,5组成的n位数,要求n位数中这五个数字每个至少出现一次,求所有这种n位数的个数。3递推方法许多竞赛题目正面计算十分困难,于是我们避开正面计算,先考虑n-1时的情况,在计算n时的情况比n-1时的情况增添了多少,然后写出一个递推式,这样就可以利用数列的知识进行解决,但一般要求根据递推式求通项的能力要比较强,是和擅长数列的同学使用。没什么具体解释,多多练习吧例设m为大于1的正整数,数列{an}满足:a1+a2+……+an模m余0,01,q>1且则注:这个式子成立的前提挺多,不难看出当p=q=2时,这个式子即为柯西不等式。3排序不等式4琴生不等式首先来了解凸函数的定义一般的,设f(x)是定义在(a,b)内的函数如果对于定义域内的任意两数x1,x2都有则称f(x)是(a,b)内的下凸函数,一般说的凸函数,也就是下凸函数,例如y=x2,从图像上即可看出是下凸函数,也不难证明其满足上述不等式。如果对于某一函数上述不等式的等号总是不能成立,则称此函数为严格凸函数。注:凸函数的定义为我们提供了极为方便地证明一个函数为凸函数的方法。这个方法经常使用。此外利用二阶求导也可以判断一个函数为凸函数,凸函数的二阶导数是非负数。凸函数具有的常用性质性质一:对于(a,b)内的凸函数f(x),有\n智浪教育—普惠英才文库注:此即常说的琴生不等式性质二:加权的琴生不等式对于(a,b)内的凸函数,若,则注:加权琴生不等式很重要,当时,即为原始的琴生不等式。注:另外,对于上面有关凸函数和琴生不等式的部分,如果将不等号全部反向,则得到的便是凹函数,以及凹函数的琴生不等式。例设xi>0(i=1,2,…,n),,求证:注:不仅要用琴生不等式,注意知识综合利用。5利用二次函数的性质一般来说,许多题目是涉及x,y,z三个量的证明题,由于二次函数的性质十分好用,因此凑出一个关于其中一个字母的二次函数,进而利用二次函数的性质可以解决最值问题。例设x,y,z≥0,且x+y+z=1,求xy+yz+zx-3xyz的最大最小值。提示:将x=1-y-z代入,整理成关于y的二次函数,最值即为,整理后不难得到z=0和z=1式分别取到最大值和最小值0,然后只需举一例证明能够取到即可。