高中数学竞赛大纲 5页

  • 36.50 KB
  • 2022-07-26 发布

高中数学竞赛大纲

  • 5页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
【高中数学竞赛应该掌握的内容和知识点(共17大点,101小点,244小小点)】1.**(set)1.1**的阶,**之间的关系。1.2**的分划1.3子集,子集族1.4容斥原理2.函数(function)2.1函数的定义域、值域2.2函数的性质2.2.1单调性2.2.2奇偶性2.2.3周期性2.2.4凹凸性2.2.5连续性2.2.6可导性2.2.7有界性2.2.8收敛性2.3初等函数2.3.1一次、二次、三次函数2.3.2幂函数2.3.3双勾函数2.3.4指数、对数函数2.4函数的迭代2.5函数方程3.三角函数(trigonometricfunction)3.1三角函数图像与性质3.2三角函数运算3.3三角恒等式、不等式、最值3.4正弦、余弦定理3.5反三角函数3.6三角方程4.向量(vector)4.1向量的运算4.2向量的坐标表示,数量积5.数列(sequence)5.1数列通项公式求解5.1.1换元法5.1.2特征根法5.1.3不动点法,迭代法5.1.4数学归纳法,递归法6.不等式(inequality)6.1解不等式6.2重要不等式6.2.1均值不等式6.2.2柯西不等式6.2.3排序不等式6.2.4契比雪夫不等式6.2.5赫尔德不等式6.2.6权方和不等式6.2.7幂平均不等式6.2.8琴生不等式6.2.9Schur不等式6.2.10嵌入不等式6.2.11卡尔松不等式6.3证明不等式的常用方法6.3.1利用重要不等式6.3.2调整法6.3.3归纳法6.3.4切线法6.3.5展开法6.3.6局部法6.3.7反证法6.3.8其他7.解析几何(analyticgeometry)7.1直线与二次曲线方程7.2直线与二次曲线性质7.3参数方程7.4极坐标系8.立体几何(solidgeometry)8.1空间中元素位置关系8.2空间中距离和角的计算8.3棱柱,棱锥,四面体性质8.4体积,表面积8.5球,球面8.6三面角\n8.7空间向量9.排列,组合,概率(permutations,combinatorics,probability)9.1排列组合的基本公式9.1.1加法、乘法原理9.1.2无重复的排列组合9.1.3可重复的排列组合9.1.4圆排列、项链排列9.1.5一类不定方程非负整数解的个数9.1.6错位排列数9.1.7Fibonacci数9.1.8Catalan数9.2计数方法9.2.1映射法9.2.2容斥原理9.2.3递推法9.2.4折线法9.2.5算两次法9.2.6母函数法9.3证明组合恒等式的方法9.3.1Abel法9.3.2算子方法9.3.3组合模型法9.3.4归纳与递推方法9.3.5母函数法9.3.6组合互逆公式9.4二项式定理9.5概率9.5.1独立事件概率9.5.2互逆事件概率9.5.3条件概率9.5.4全概率公式,贝叶斯公式9.5.5现代概率,几何概率9.6数学期望10.极限,导数(limits,derivatives)10.1极限定义,求法10.2导数定义,求法10.3导数的应用10.3.1判断单调性10.3.2求最值10.3.3判断凹凸性10.4洛比达法则10.5偏导数11.复数(complexnumbers)11.1复数概念及基本运算11.2复数的几个形式11.2.1复数的代数形式11.2.2复数的三角形式11.2.3复数的指数形式11.2.4复数的几何形式11.3复数的几何意义,复平面11.4复数与三角,复数与方程11.5单位根及应用12.平面几何(planegeometry)12.1几个重要的平面几何定理12.1.1梅勒劳斯定理12.1.2塞瓦定理12.1.3托勒密定理12.1.4西姆松定理12.1.5斯特瓦尔特定理12.1.6张角定理12.1.7欧拉定理12.1.8九点圆定理12.2圆幂,根轴12.3三角形的巧合点12.3.1内心12.3.2外心12.3.3重心12.3.4垂心12.3.5旁心12.3.6费马点12.4调和点列12.5圆内接调和四边形12.6几何变换12.6.1平移变换12.6.2旋转变换12.6.3位似变换12.6.4对称变换(反射变换)12.6.5反演变换12.6.6配极变换12.7几何不等式12.8平面几何常用方法12.8.1纯几何方法12.8.2三角法\n12.8.3解析法12.8.4复数法12.8.5向量法12.8.6面积法13.多项式(polynomials)13.1多项式恒等定理13.2多项式的根及应用13.2.1韦达定理13.2.2虚根成对原理13.3多项式的整除,互质13.4拉格朗日插值多项式13.5差分多项式13.6牛顿公式13.7单位根13.8不可约多项式,最简多项式14.数学归纳法(mathematicalinduction)14.1第一数学归纳法14.2第二数学归纳法14.3螺旋归纳法14.4跳跃归纳法14.5反向归纳法14.6最小数原理7.初等数论(elementarynumbertheory)15.1整数,整除15.2同余15.3素数,合数15.4算术基本定理15.5费马小定理,欧拉定理15.6拉格朗日定理,威尔逊定理15.7裴蜀定理15.8平方数15.9中国剩余定理15.10高斯函数15.11指数,阶,原根15.12二次剩余理论15.12.1二次剩余定理及性质15.12.2Legendre符号15.12.3Gauss二次互反律15.13不定方程15.13.1不定方程解法15.13.1.1同余法15.13.1.2构造法15.13.1.3无穷递降法15.13.1.4反证法15.13.1.5不等式估计法15.13.1.6配方法,因式分解法15.13.2重要不定方程15.13.2.1一次不定方程(组)15.13.2.2勾股方程15.13.2.3Pell方程15.14p进制进位制,p进制表示16.组合问题(combinatorics)16.1组合计数问题(参见9.1,9.2)16.2组合恒等式,不等式(参见9.3)16.3存在性问题16.4组合极值问题16.5操作变换,对策问题16.6组合几何16.6.1凸包16.6.2覆盖16.6.3分割16.6.4整点16.7图论16.7.1图的定义,性质16.7.2简单图,连通图16.7.3完全图,树16.7.4二部图,k部图16.7.5托兰定理16.7.6染色与拉姆塞问题16.7.7欧拉与哈密顿问题16.7.8有向图,竞赛图16.8组合方法16.8.1映射法,对应法,枚举法16.8.2算两次法16.8.3递推法16.8.4抽屉原理16.8.5极端原理16.8.6容斥原理16.8.7平均值原理16.8.8介值原理16.8.9母函数法16.8.10染色方法16.8.11赋值法16.8.12不变量法16.8.13反证法16.8.14构造法\n16.8.15数学归纳法16.8.16调整法16.8.17最小数原理16.8.18组合计数法17.其他(others)(了解即可,不作要求)17.1微积分,泰勒展开17.2矩阵,行列式17.3空间解析几何17.4连分数17.5级数,p级数,调和级数,幂级数17.6其他1、平面几何基本要求:掌握初中数学竞赛大纲所确定的所有内容。补充要求:面积和面积方法。几个重要定理:梅涅劳斯定理、塞瓦定理、托勒密定理、西姆松定理。几个重要的极值:到三角形三顶点距离之和最小的点--费马点。到三角形三顶点距离的平方和最小的点--重心。三角形内到三边距离之积最大的点--重心。几何不等式。简单的等周问题。了解下述定理:在周长一定的n边形的集合中,正n边形的面积最大。在周长一定的简单闭曲线的集合中,圆的面积最大。在面积一定的n边形的集合中,正n边形的周长最小。在面积一定的简单闭曲线的集合中,圆的周长最小。几何中的运动:反射、平移、旋转。复数方法、向量方法。平面凸集、凸包及应用。2、代数在一试大纲的基础上另外要求的内容:周期函数与周期,带绝对值的函数的图像。三倍角公式,三角形的一些简单的恒等式,三角不等式。第二数学归纳法。递归,一阶、二阶递归,特征方程法。函数迭代,求n次迭代,简单的函数方程。n个变元的平均不等式,柯西不等式,排序不等式及应用。复数的指数形式,欧拉公式,棣莫佛定理,单位根,单位根的应用。圆排列,有重复的排列与组合,简单的组合恒等式。一元n次方程(多项式)根的个数,根与系数的关系,实系数方程虚根成对定理。简单的初等数论问题,除初中大纲中所包括的内容外,还应包括无穷递降法,同余,欧几里得除法,非负最小完全剩余类,高斯函数,费马小定理,欧拉函数,孙子定理,格点及其性质。3、立体几何多面角,多面角的性质。三面角、直三面角的基本性质。正多面体,欧拉定理。体积证法。截面,会作截面、表面展开图。4、平面解析几何\n直线的法线式,直线的极坐标方程,直线束及其应用。二元一次不等式表示的区域。三角形的面积公式。圆锥曲线的切线和法线。圆的幂和根轴。5、其它抽屉原理。容斤原理。极端原理。集合的划分。覆盖。竞赛内容和方式  1、联赛分第一试和第二试。  2、第一试的内容不超出现行高中数学教学大纲,其中包括六道选择题、六道填空题和三道解答题,难度维持在高考中高档试题的水平,能力要求略有提高。  3、第二试共有三道题。其中一道平面几何题、一道代数或数论题、一道组合题。内容以竞赛大纲为准。8:00-9:20,一试;9:40-12:10,加试(也就是二试)。

相关文档