- 777.10 KB
- 2022-07-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
初高中数学讨论群:417312855名单供题人:悟、冰泪草、软妹子、Grade8独孤、九月少年蓝各领队:悟、冰泪草、软妹子、Grade8独孤、九月少年蓝、幼稚园主任闹闹参赛成员:准初二:初一基佬川普、准初三Marsking、初一微光,倾城、静静地守护你@、初一-千勋、~见暮离、初二,,,、格格不入、意&幻无~~桐舞*鳞、初二学者准初三:怠慢与勤劳、幼稚园大班准、初二7、初二傻、初二~大可爱、初三小韩、书幼、芮&琬、准初一幼稚园、幼儿园晴雪初高中数学讨论群准高一:孤月*迥噫、(@*.*@)、高一阿迪力、卧听残夏、高一.欧推、准高一冉、准高一、黄贤程高一、初三Bill、高中一年级(龙、准高一91965、准高一-超大朵朵、高一小小玲、初三。。。、阿猫阿狗准高、准高一NipeSimba、准高一芊芊、准高一-时光、准高一-浙江社平党主席、六年群竞赛试题级、네,어이가없어서、乌鲁木齐市第四十中学初三-在水一方准高二:高一柳、高二狗、高一·离群症、高一闭关涟梦、青志协会长~杂、高二灯盏组别:软妹子:格格不入、意&幻无~~桐舞*鳞、怠慢与勤劳、幼稚园大班准、初二7、初二傻、初二~大可爱、六年级Grade8独孤:初一基佬川普、准初三Marsking、初一微光,倾城、静静地守护你@、初一-千勋、~见暮离、初二,,,、네,어이가없어서九月少年蓝:初三小韩、书幼、芮&琬、准初一幼稚园、幼儿园晴雪、孤月*迥噫、(@*.*@)2017暑期幼稚园主任闹闹:高一阿迪力、卧听残夏、高一.欧推、准高一冉、准高一、黄贤程高一、初三Bill、初二学者冰泪草:高中一年级(龙、准高一91965、准高一-超大朵朵、高一小小玲、初三。。。、阿猫阿狗准高、准高一NipeSimba、准高一芊芊悟:准高一-时光、高一一盏灯、高一柳、高二狗、高一·离群症、高一闭关涟梦、青志协会长~杂、准高一-浙江社平党主席、乌鲁木齐市第四十中学初三-在水一方1\n初高中数学讨论群:417312855T5.(1)如图,正方形ABCD面积为1,E为BC三等分点,则S.(准初二)一、填空题(5’)阴影(Grade8独孤供题)111222T1.(1)实数a,b,c满足abc1,0,则a1b3c5.a1b3c5(准初二,准初三)(准高二-悟供题)1(2)集合x|1log110,xN的真子集个数是.(准高二)(准高二-悟供题)x22(3)对任意实数p,抛物线y2xpx4p1都通过一定点,定点坐标为.(准高一)(准高二-悟供题)222(2)若x,y,z是非负整数,xyz7,求满足此条件的所有x,y,z为.(准初三)T2.如图,有一块边长为6cm的正三角形纸板,在它的三个角处分别截去个彼此全等的筝形,再沿图中的虚线折起,做成一个无盖的直三棱柱纸盒,则该纸盒侧面积的最大值是.(Grade8独孤供题)(全年级)(冰泪草供题)(3)如图,在ABC中,ABAC,BD平分ABC,ADBDDC,A.(Grade8独孤供题)(在答案后简写过程,否则只1分)(准高一,准高二)2T3.(1)yxmxn与x轴正半轴交于A,与y轴负半轴交于B,AB中垂线交对称轴于M,交AB于N,若MNd,则mn的最大值为.(准高一,准高二)(软妹子供题)nT6.设p为正整数n的最小素因数,若是素数,则p满足p.(全年级)(悟供题)p(2)若x,y,z满足:21cosxx11|x|111T7.试写出5243的所有实数根,为.(全年级)(悟供题)xyz7T8.(阅读D6后做题)(悟供题)111xln1xyzx8(1)求极限lim.(准初二、准初三)x01cosx1111zxy9(2)求dx.(准高二)exln2x2ln13x则x,y,z.(准初二,准初三)(Grade8独孤供题)(3)求极限lim.(准高一)x0sinx22n2nT4.设S(n)为n的各位数字之和,如,S(1932)193215,当p为素数时,存在n使得T9.已知i1,即i1,n为正整数,n2017,满足ii...iii...i0,则所有满足条件的n的和为.(全年级)(悟供题)S(n)n(modp),写出一个n.(全年级)(准高二-悟供题)T10.设x为x的整数部分,x为x的小数部分,求方程x4x30的所有解为.(全年级)(悟供题)2\n初高中数学讨论群:417312855D2.(平面几何)(1)设P为等腰三角形ACB斜边AB任意一点,PEAC,PFBC,PGEF,延长GP二、解答题(25’)并取一点D使得PDPC,求证:BCBD,BCBD.(准初二,准初三)(九月少年蓝供题)D1.平面几何阅读题(准高二-悟供题)“四点共圆”是平面几何中几乎最重要的求解技术之一,对解题往往可以做到“秒解”的作用,下面我们来介绍这种技术:1.四点共圆定义:若四个点在同一个圆周上,则这四个点共圆.2.四点共圆的判别方法(如右图)(逆命题也成立):(1)如图,若ADBACB,则A,B,C,D四点共圆.(2)若DABDCB,则A,B,C,D四点共圆.(3)若存在一点O使得AOBOCODO,则A,B,C,D四点共圆.(2)如图,正方形ABCD中DEDC,DHCE,求证:BQ∥CE.(准高一)(悟供题)3.举个栗子,如图,已知E,F为AD,DC中点,AF,BE交于G,(提示:与前面四点共圆有关)连接GC,求证:CGBAEB.【证明】连接BF,导角得BGF90,且BCF90,则有B,G,F,C共圆,则BGCBFCAFDAEB.【证毕!】那么请回答下面的问题:(1)如图,在三角形ABC中,ADBC,DEAB,DFAC,求证:B,E,F,C四点共圆.(准初二,准初三)(3)ABC外接圆圆O中,AD平分BAC,EF∥BC,G圆DEF圆O,P圆OGQ,求证:AP∥BC.(准高二)(提示:与前面四点共圆有关)(悟供题)(2)如图,在圆O上取E点,作CEADEB,求证:C,O,E,D共圆.(准高一,准高二)3\n初高中数学讨论群:417312855D3.(不等式阅读题)(悟供题)D5.(解析几何)(九月少年蓝冰泪草悟供题)不等式问题是初等数学中最重要的一部分,下面介绍两个不等式:(有关下面符号请自行百度)(1)在直角坐标系xOy中,有一菱形ABCD,其边长为4,已知OBOD6,求证:OAOC为定值.1.均值不等式:(准初二,准初三)ab1二元形式:a,b0ab.22(2)如图1,二次函数yxbxc的图象过点A(3,0),B(0,4)两点,动点P从点A出发,在线段AB上nnai沿AB的方向以每秒2个单位长度的速度运动,过点P作PDy轴于点D,交抛物线于点C.设运动时间i12n元形式:a,a,...,ana.12nii1n为t(秒).(准高一)2.柯西不等式:2i.求二次函数yxbxc的表达式;222221.a,b,c,d为实数abcdacbd.5nnn2ii.连接BC,当t时,求BCP的面积;2.a,a,...,a,b,b,...,ba2b2ab.612n12niiiii1i1i1iii.如图2,动点P从点A出发时,动点Q同时从点O出发,在线段OA上沿OA的方向以每秒1个单位长度的请回答下列问题:xyz3速度运动,当点P与点B重合时,P,Q两点同时停止运动.连接DQ,PQ,将DPQ沿直线PC折叠得到DPE.(1)已知x,y,z0,求证:.(准初二,准初三,准高一)yzzxxy2在运动过程中,设DPE和OAB重合部分的面积为S,求S与t的函数关系式及t的取值范围.abcd2(2)已知a,b,c,d0,abcd4,求证:.(准高二)3333b4c4d4a43D4.如图,ABC内接于圆O,BE,CF分别平分ABC,ACB,直线EF交圆O于M,N,求证:BTCSABAC.(各年级压轴几何)(悟供题)图2图1(3)设曲线C:f(x,y)1,曲线C:g(x,y)1,P是C上一点,O为坐标系原点,射线OP交C于R,又12212点Q在OP上,且满足OPOQkOR,当点P在曲线C移动时,若对任意实数t都有:22f(tx,ty)tf(x,y),g(tx,ty)tg(x,y),则求证:点Q的轨迹方程是f(x,y)kg(x,y)0.(准高二)4\n初高中数学讨论群:417312855xxaD6.Calculus阅读题(悟供题)5.adxC6.cosxdxsinxC7.sinxdxcosxC8.lnxdxxlnx1ClnaCalculus(微积分)是近代数学中最为璀璨的部分,也是现代数学最重要的基础,学好微积分对于我们来19.logxdxxlnxxC.说有着重大意义,下面我们介绍一下有关的内容,让大家稍微领略一下其风采.alna微积分,是由“微分”和“积分”组成,由牛顿和莱布尼兹先后独立创造的,但现代数学中所用符号与莱布尼兹的记号相近.3.定积分:好久以前,人们总想解决有关“曲边梯形”面积的问题,就有了定积分的思想.1.微分:谈到微分,我们先引入导数的定义,如图,把曲面边梯形分成一个个小矩形在求和就是曲边梯形的近似,当矩形的底0时,就得到其精确解了.yyyy00图中直线的斜率为k,想象一下,当我们直接取无穷小的微分,就避免了算积分定义和求和求极限的过程xxxx00了.S为面积,取dx为底,高为f(x),则小矩形的面积为:x越来越小时,此直线应该越来越接近函数在x点的0bbf(x)dx,从a到b加起来就得到了Sf(x)dx,这里注意,此时的...aa切线,当x0时(记作lim),此直线就为函数在x点的0x0与不定积分的不是一个概念,但是牛顿和莱布尼兹将定积分与不定积分联y切线,此切线的斜率为klim,k就是函数在00x0x系在一起,称作牛顿-莱布尼兹公式(NL公式),为:dyx的导数,若函数为yf(x),记作,若x不在是b00dxxx若f(x)dxF(x)C,则f(x)dxF(b)F(a).(a和b称为积分上下限.)0adyx一个数,而变成自变量x时则称或y'或f'(x)为y的导函注1.当积分的上限或下限不是常数,而是变量时,即f(t)dt则其求导公式为:dxaxb数,这里的dydf(x)g(x)dx即为“微分”,下面为部分求导公式:(对x求导)df(t)dtdf(t)dtaxf(x),f(x).aa1xxxx1dxdx1.k'0(k为常数)2.x'ax3.a'alnx4.e'ee2.718...5.logx'axlnaf(x)f'(x)1dy注2.当求极限时,当limf(x)0,limg(x)0时,有limlim.6.lnx'7.sinx'cosx8.cosx'sinx(注:若f(x),dyf(x)dx.)x0x0x0g(x)x0g'(x)xdx注3.当x0时,当全是乘积形式时,可以用sinxx,ln(1x)x.uu'vuv'若u,v是两个关于x函数,则:uv'u'v',uv'u'vuv','.2注4.f(x)g(x)dxf(x)dxg(x)dx.vv请回答下列问题:df(g)dfdgdf若复合函数f(g(x))(用f,g表示),则有,为将g看为整体求导.xdxdgdxdg2tln(1tsint)dt0(1)求极限lim,并写出详细过程,写出所用公式.(准高一,准高二)4x0x2.不定积分:不定积分就是微分的逆运算,用记号表示,也就是f'(x)dxf(x)C,其中C是积分常数,lncosx(2)求极限lim,,并写出详细过程,写出所用公式.(准初二)2x0x由于C'0.若f(x)dxF(x)C,则称F(x)是f(x)的原函数.这里我们不再赘述,下面为部分积分公式:2(3)求yx与yx所围面积,并写出详细过程.(准初三)a1ax1xx1.kdxkxC(k为常数)2.xdxC(a1)3.dxlnxC4.edxeCa1x5\n初高中数学讨论群:4173128552bD7.(1)设a,b为正数,证明:kaabk2a.(悟供题)b2ab2a2aab(注:不可用后式推出前式.)(准初二准初三)3n1(2)设x23...n,n2,3,...求证:xx,n2,3,....(冰泪草供题)nn1n12...n(准高一,准高二)D8.(1)求函数y1512cosx423sinx743sinx1043sinx6cosx的最小值.(注:数形结合)(准高一)n10,当n100时,(2)设nZ函数f:ZR满足f(n)证明:对于任意的n100都有ffn11,当n100时.f(n)91.(准高二)(3)已知一直线yaxb(a0),试推导其有关ycxdc0对称的函数解析式.(准初二,准初三)222D9.设函数f(x,y,z)在区域x,y,z|xyz1上有连续二阶偏导数,且满足:222fff222fffxyz.计算Ixyzdxdydz.(悟供题)222xyzxyzD10.已知x为下取整函数,即1.51,53.853,3.254,求下式的值:20172017201720172017123...2017?(全年级)(悟供题)6