永兴镇竞赛试题 7页

  • 81.64 KB
  • 2022-07-26 发布

永兴镇竞赛试题

  • 7页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
2、在直角坐标系中,点P(6-2“-5)在第二象限,C、x<3A、31;③a+b0,贝心的取值范围是()\nIx+3y=l-aA、Q<—1B>d—1D、d>l\n10、如果不等式?>_2无解,则方的取值范围是()[y~2B.b<~2C.bA2D.bW—2二、填空题(本大题共10小题,每题3分,共30分)11、斥的平方根是,IV5-3I的相反数是12、已知线段MN二4,MN〃y轴,若点M坐标为(-1,2),则N点坐标为13、如图AB〃CD,则Z1+Z2+Z3+……+Z2n=度14、甲、乙两商丿占某种铅笔标价都是一元,学生小王欲购买这种铅笔,发现甲、乙两商店都让利优惠,甲店实行每买5枝送一枝(不足5枝不送);乙店实行买4枝或4枝以上打8.5折,小王买了13枝这种铅笔,最少需花元15、已知点A在x轴上方,到x轴的距离是3,到y轴的距离是4,那么点A的坐标是.16、阅读下列语句:①对顶角相等;②同位角相等;③画ZA0B的平分线0C;④这个角等于30°吗?在这些语句中,属于真命题的是(填写序号)17、已知兀2+小=3,与+于=一2,贝!]2兀2-xy-3y2=18、如下图,肓径为1个单位长度的圆从原点沿数轴向右滚动一周(不滑动),圆上的一点由原点到达点0’,点0’的坐标是19、一船从A点出发,向北偏西60。方向行进了200畑到B点,再从B点向南偏东20“方向走500km到达C点,则ZABC=.20>关于x的不等式(2a-b)x>a-2b的解是^<-,则关于兀的不等式ax^b<0的解2三、解答题:(本大题共60分)21、(本题20分,每小题5分)(1)解方程组⑵解不等式r+¥/9+|-2|+V27+(-l)2015并把不等式组的解集在数轴上表示出来。22、(本题6分)如图,已知Zl+Z2=180o,ZDEF二ZA,试判断ZACB与ZDEB的大小关系,并对结论进行说明.23、(本题6分)如图,AABC中任意一点P(x0,y0)经平移后对应点为R(x°+5,y°+3),将△ABC作同样的平移得到△ADC】.(1)画出△ABG,写出A“B,,G的坐标.(2)求tfcjAABC的面枳严ax+5y=154x=by-2时,甲看错了方程①屮的a,解得x=-3y=—1乙看错了②中的b,打试求存+(弋严的值.\n26、(本题10分)某旅游团有40个成人和24个儿童,现计划租用甲、乙两种游船共8只进行游湖,已知一只甲游船可乘8个成人和2个儿童,一只乙游船可乘4个成人和4个儿童。(1)该旅游团如何安排甲、乙两种游船进行游湖?有几种方案?(2)若甲种游船每只需要费用200元,乙种游船每只需要费用150元,则该旅游团应该选择哪种方案,使费用最少?最少费用是多少?27、(本题10分)在东营市屮小学标准化建设工程屮,某学校计划购进一批电脑和电子H板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑、每台电子白板各多少万元?(2)根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.\n参考答案一、选择题(共10小题,每小题3分,共30分)1、B2、B3、D4、A5、B6、C7、A8、C9、C10、A二、填空题(本大题共10小题,每题3分,共30分)62兀1K±2,75-3;12>y=_*;13、10.95;14、(4,3)或(-4,3);15、_®;16、7;317、总体是该校七年级同学的视力情况,个体是该校七年级每个同学的视力情况,样本是七年级的10个班中,每班被抽取5名学生的视力情况,样本的容量是50.18、Ji;19、19;20、90三、解答题:21、(1)x=2y二5(2).x>3(1)不等式组的解集是:亍Wx〈3(2)解:原式=3+2+3-1=722、证明:因为Z1=Z2,Z1=Z3(对顶角相等)所以Z2二Z3,所以CE〃BF(同位角相等,两直线平行)所以ZC=Z4(两直线平行,同位角角相等)又因为ZB二ZC,所以ZB二Z4,23、24.所以AB〃CD(内错角相等,所以ZA二ZD(两直线平行,解:(1)画出正确图(T,一2)一,X(2,两直线平行)内错角相等)-2),C'(2)A'(3)Saabc=3(1)50(2)略(提示5人)(3)120(4)36°25、解:(1)分情况计算:设购进甲种电视机才台,乙种电视机y台,丙种电视机?台.(1,0)(I)购进甲、乙两种电视机恙爲叶9叭解得x=25,y=25.(jc+z=5O(x=35(II)购进甲、丙两种电视机彳9解得彳'[15OS+250®=90000[z=15.b'+z=50,[y=87.5,(III)购进乙、丙两种电视机彳丿解得^(不合实际,舍去)[210^4-250(^=90000lz=-37.5・\n故商场进货方案为购进甲种25台和乙种25台;或购进甲种35台和丙种15台.(2)按方案(I),获利150X25+200X25=8750(元);按方案(II),获利150X35+250X15=9000(元).・・・选择购进甲种35台和丙种15台.26、【答案】(1)120X0.95=114(元)所以实际应支付114元.(2)设购买商品的价格为兀元,由题意得:0.8x4-168<0.95x解得x>1120所以当购买商品的价格超过1120元时,采用方案一更合算.27、解:(1)设电脑、电子白板的价格分別为x,y元,根据等量关系:1台电脑+2台电子白板凳3.5万元,2台电脑+1台电子白板凳2.5万元,列方程组即可.(2)设购进电脑x台,电子白板有(30-x)台,然后根据题冃中的不等关系列不等式组解答.解:(1)设每台电脑x万元,每台电子白板y万元,根据题意得:x+2y二3.5,2x+y=2.53分…兀=0.5,解得:<.;4分卜=1.5答:每台电脑0.5万元,每台电子白板1.5万元.5分(2)设需购进电脑曰台,则购进电子白板(30-臼)台,0.5g+1.5(30—q)N28,0.5g+1.5(30—q)W30解得:15#a17,即沪15,16,17.7分故共有三种方案:方案一:购进电脑15台,电子白板15台.总费用为0.5x15+1.5x15=30万元;方案二购进电脑16台,电子白板14台.总费用为0.5x16+1.5x14=29万元;方案三:购进电脑17台,电子白板13台.总费用为0.5x17+1.5x13=28万元;

相关文档