- 368.00 KB
- 2022-07-26 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
www.linstitute.netTheCENTREforEDUCATIONinMATHEMATICSandCOMPUTINGcemc.uwaterloo.caEuclidContestTuesday,April12,2016(inNorthAmericaandSouthAmerica)Wednesday,April13,2016(outsideofNorthAmericaandSouthAmerica)Time:212hours
c2016UniversityofWaterlooDonotopenthisbookletuntilinstructedtodoso.Numberofquestions:10Eachquestionisworth10marksCalculatorsareallowed,withthefollowingrestriction:youmaynotuseadevice
thathasinternetaccess,thatcancommunicatewithotherdevices,orthatcontains
previouslystoredinformation.Forexample,youmaynotuseasmartphoneora
tablet.Partsofeachquestioncanbeoftwotypes:1.SHORTANSWERpartsindicatedby•worth3markseach•fullmarksgivenforacorrectanswerwhichisplacedinthebox•partmarksawardedonlyifrelevantworkisshowninthespaceprovided2.FULLSOLUTIONpartsindicatedby•worththeremainderofthe10marksforthequestion•mustbewrittenintheappropriatelocationintheanswerbooklet
•marksawardedforcompleteness,clarity,andstyleofpresentation•acorrectsolutionpoorlypresentedwillnotearnfullmarksWRITEALLANSWERSINTHEANSWERBOOKLETPROVIDED.•Extrapaperforyourfinishedsolutionssuppliedbyyoursupervisingteachermustbeinsertedintoyouranswerbooklet.Writeyourname,schoolname,andquestionnumberonanyinsertedpages.
2,etc.,rather•Expresscalculationsandanswersasexactnumberssuchasπ+1and√
thanas4.14...or1.41...,exceptwhereotherwiseindicated.Donotdiscusstheproblemsorsolutionsfromthiscontestonlineforthenext48hours.\nThename,grade,schoolandlocation,andscorerangeofsometop-scoringstudentswillbepublishedonourwebsite,cemc.uwaterloo.ca.Inaddition,thename,grade,schoolandlocation,andscoreofsometop-scoringstudentsmaybesharedwithothermathematicalorganizationsforotherrecognitionopportunities.\nwww.linstitute.netNOTE:1.Pleasereadtheinstructionsonthefrontcoverofthisbooklet.2.Writeallanswersintheanswerbookletprovided.3.Forquestionsmarked,placeyouranswerintheappropriateboxintheanswerbookletandshowyourwork.4.Forquestionsmarked,provideawell-organizedsolutionintheanswerbooklet.
Usemathematicalstatementsandwordstoexplainallofthestepsofyoursolution.
Workoutsomedetailsinroughonaseparatepieceofpaperbeforewritingyourfinished
solution.5.Diagramsarenotdrawntoscale.Theyareintendedasaidsonly.6.Whilecalculatorsmaybeusedfornumericalcalculations,othermathematicalstepsmust
beshownandjustifiedinyourwrittensolutionsandspecificmarksmaybeallocatedforthesesteps.Forexample,whileyourcalculatormightbeabletofindthex-intercepts
ofthegraphofanequationlikey=x3−x,youshouldshowthealgebraicstepsthatyouusedtofindthesenumbers,ratherthansimplywritingthesenumbersdown.ANoteaboutBubblingPleasemakesurethatyouhavecorrectlycodedyourname,dateofbirthandgradeonthe
StudentInformationForm,andthatyouhaveansweredthequestionabouteligibility.1.(a)Whatistheaverageoftheintegers5,15,25,35,45,55?(b)Ifx2=2016,whatisthevalueof(x+2)(x−2)?(c)Inthediagram,pointsP(7,5),Q(a,2a),andR(12,30)lieonastraightline.Determineythevalueofa.
R(12,30)Q(a,2a)P(7,5)x2.(a)Whatareallvaluesofnforwhichn9=25n?(b)Whatareallvaluesofxforwhich(x−3)(x−2)=6?(c)AtWillard’sGroceryStore,thecostof2applesisthesameasthecostof
3bananas.Rossbuys6applesand12bananasforatotalcostof$6.30.Determine
thecostof1apple.\nwww.linstitute.net3.(a)Inthediagram,pointBisonAC,pointFisonDB,andpointGisonEB.DFq˚r˚p˚ABs˚Gt˚Eu˚CWhatisthevalueofp+q+r+s+t+u?(b)Letnbetheintegerequalto1020−20.Whatisthesumofthedigitsofn?(c)Aparabolaintersectsthex-axisatP(2,0)andQ(8,0).ThevertexoftheparabolaisatV,whichisbelowthex-axis.Iftheareaof4VPQis12,determinethe
coordinatesofV.4.(a)Determineallanglesθwith0◦≤θ≤180◦andsin2θ+2cos2θ=74.(b)Thesumoftheradiioftwocirclesis10cm.Thecircumferenceofthelarger
circleis3cmgreaterthanthecircumferenceofthesmallercircle.Determinethe
differencebetweentheareaofthelargercircleandtheareaofthesmallercircle.5.(a)Charlotte’sConvenienceCentrebuysacalculatorfor$p(wherep>0),raisesits
pricebyn%,thenreducesthisnewpriceby20%.Ifthefinalpriceis20%higher
than$p,whatisthevalueofn?(b)Afunctionfisdefinedsothatifnisanoddinteger,thenf(n)=n−1andifnis
aneveninteger,thenf(n)=n2−1.Forexample,ifn=15,thenf(n)=14andifn=−6,thenf(n)=35,since15isanoddintegerand−6isaneveninteger.
Determineallintegersnforwhichf(f(n))=3.6.(a)Whatisthesmallestpositiveintegerxforwhichintegery?132=x10yforsomepositive(b)Determineallpossiblevaluesfortheareaofaright-angledtrianglewithoneside
lengthequalto60andwiththepropertythatitssidelengthsformanarithmetic
sequence.(Anarithmeticsequenceisasequenceinwhicheachtermafterthefirstisobtained
fromtheprevioustermbyaddingaconstant.Forexample,3,5,7,9arethefirst
fourtermsofanarithmeticsequence.)\nwww.linstitute.net7.(a)AmritaandZhangcrossalakeinastraightlinewiththehelpofaone-seatkayak.Eachcanpaddlethekayakat7km/handswimat2km/h.Theystartfromthe
samepointatthesametimewithAmritapaddlingandZhangswimming.Aftera
while,Amritastopsthekayakandimmediatelystartsswimming.Uponreaching
thekayak(whichhasnotmovedsinceAmritastartedswimming),Zhanggetsin
andimmediatelystartspaddling.Theyarriveonthefarsideofthelakeatthe
sametime,90minutesaftertheybegan.Determinetheamountoftimeduring
these90minutesthatthekayakwasnotbeingpaddled.(b)Determineallpairs(x,y)ofrealnumbersthatsatisfythesystemofequationsx 22+y−2x1y 2+x−y5=0=08.(a)Inthediagram,ABCDisaparallelogram.PointEisonDCwithAEperpendicularABtoDC,andpointFisonCBwithAFperpendiculartoCB.IfAE=20,AF=32,3220andcos(∠EAF)=13,determinetheexact3,determinetheexactvalueoftheareaofquadrilateralAECF.DECF(b)Determineallrealnumbersx>0forwhichlog4x−logx16=76−logx89.(a)ThestringAAABBBAABBisastringoftenletters,eachofwhichisAorB,
thatdoesnotincludetheconsecutivelettersABBA.ThestringAAABBAAABBisastringoftenletters,eachofwhichisAorB,
thatdoesincludetheconsecutivelettersABBA.Determine,withjustification,thetotalnumberofstringsoftenletters,eachofwhichisAorB,thatdonotincludetheconsecutivelettersABBA.(b)Inthediagram,ABCDisasquare.PointsEandFarechosenonACsothat∠EDF=45◦.IfAE=x,EF=y,andFC=z,provethaty2=x2+z2.ABxEyF45˚zDC\nwww.linstitute.net10.Letkbeapositiveintegerwithk≥2.Twobagseachcontainkballs,labelledwith
thepositiveintegersfrom1tok.Andr´eremovesoneballfromeachbag.(Ineachbag,eachballisequallylikelytobechosen.)DefineP(k)tobetheprobabilitythat
theproductofthenumbersonthetwoballsthathechoosesisdivisiblebyk.(a)CalculateP(10).(b)Determine,withjustification,apolynomialf(n)forwhich•P(n)≥f(n)n2forallpositiveintegersnwithn≥2,and•P(n)=f(n)n2forinfinitelymanypositiveintegersnwithn≥2.(Apolynomialf(x)isanalgebraicexpressionoftheform
f(x)=amxm+am−1xm−1+···+a1x+a0forsomeintegerm≥0andforsomerealnumbersam,am−1,...,a1,a0.)2016(c)ProvethereexistsapositiveintegermforwhichP(m)>.m