- 816.32 KB
- 2022-07-27 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
黑龙江省哈尔滨市木兰高级中学高中物理经典复习资料求解天体问题的金钥匙一、存在问题。运用万有引力定律、牛顿运动定律、向心力公式等力学规律求解天体(卫星)运动一直是高考命题频率较高的知识点。要重视这类问题分析的基本规律。解决本单元问题的原理及方法比较单一,应该不难掌握,但偏偏有相当多的学生颇感力不从心,原因何在?物理规律不到位,公式选择无标准。研究对象找不准,已知求解不对应。空间技术太陌生,物理情景不熟悉。物理过程把不准,物理模型难建立。1、2、3、4、二、应对策略。1>万有引力提供向心力。设圆周中心的天体(中心天体)的质量为做圆周运动的天体(卫星)的质量为m期为T,万有引力常数为M半径为轨道半径为R;r,线速度为v,角速度为周G则应有:\nMmv2G—=m2rMmG=m2MmG=m2MmG=mg2(g表示轨道处的重力加速度)注意:当万有引力比物体做圆周运动所需的2、在中心天体表面或附近,万有引力近似等于重力。向心力小吋,物体将坐离心运动。GMl^=mgoR(go表示天体表面的重力加速度)2注意:在研究卫星的问题中,若已知中心天体表面的重力加速度g。时,常运用GM=goR作为桥梁,可以把“地上”和“天上"联系起来。由于这种代换的作用巨大,此时通常称为黄金代换式。三、在一些与天体运行有关的估算题中,常存在一些隐含条件,应加以运用。Mm①在地球表面物体受到的地球引力近似等于重力。mg②在地球表面附近的重力加速度g=9.8m\s③地球自转周期T=24h\n③地球公转周期T=365天。\n30天。③月球绕地球运动的周期约为四、应用举例\n仁天体的运动规律。\nMm越大,V越m可得:②由2GM.—f-―,g越小。=nJ/可得:③由G④由GMm可得:GMr越大,T越大。Mm2ma向可得:GM2r越大,向越小。a若高度增大则有其它形式的能转化为卫星的机械能,2+mqh2大。mv设人造地球卫星绕地球作匀速圆周运动,卫星离地面越高,则卫速度越大B、角速度越_C—向心加速度越大D、三颗人造地球卫星A、B、1、A、2、卫星以下说法中正确的是(E增越长C绕地球作匀速圆周运动,如图所示,已知)①线速度关系为Va>Vb>Vc②周期关系为Ta九大行星绕行星名称—丈阳运行—勺轨迹可》—且略地认—为都是圆-Jea—木星一$星球半;--空和轨道半径如下:海王‘茨所示:宣年星星星星球半径6x10m2.446.056.373.3969.858.223.722.42.50轨道半径11x10m0.5791.081.502.287.7814.328.745.059.0①由此表所列数据可以估算出冥王星的公转周期最接近于(D)A、4年B、40年C>140年D、240年②由此表所列数据可以估算岀太阳的质量最接近于(B)2424A、5.98x10kgB、2.0x10kg3030C.2.0x10kgD.5.98x10肚2、2003年10月15H,我国成功发射了第一艘载人宇宙飞船“神舟五号"酒泉卫星发射5km・假设飞中心发射成功,飞船进入预定轨道环绕地球飞行14圈用时23h,行程6・27x103km(引力常量G未知)求地球表面的重船运行的轨道是圆形轨道。已知地球半径R=6.4x10\n力加速度?周运动。已知火星从如图所示的火星与地球星距3、火星和地球绕太阳的运动可以近似看作同一平面内同方向的运速运的轨道半径r11m,地球的轨道半径r11m火=1.5x10地=1.0x10?(保留两位有效数字)火星最近的时刻开始计时,估算火星再次与地球相距最近需多少地球年4、超重和失重①人造地球卫星在发射过程中有一段向上加速运动阶段,在返回地球时有一个减速阶段,这两个过程都处于超重状态。人造卫星②人造地球卫星进入轨道作匀速圆周运动时,由于万有引力完全提供向心力,及内面的物体都处于完全失重状态•超重状态不出现在(C)B、卫星加速度逐渐减小的上升末期。、卫星减速下降的回收阶段。1、在发射和回收人造地球卫星的过程中,A、卫星加速度逐渐增大的上升初期。C、卫星加速下降的回收阶段。D2、人造卫星进入轨道作匀速圆周运动,卫星内的物体以下说法中正确的有(①处于完全失重状态,所受重力为零②处于完全失重状态,但仍受重力作用③所受的重力就是维持它跟随卫星一起作匀速圆周运动所属的向心力④处于平衡状态,即所受外力为零A.(2)(3)B.①④C・②④D.③④3、人造地球卫星进入轨道做匀速圆周运动,下面说法中正确的是()A卫星内的物体失重,卫星没有失重.B卫星内的物体不再有重力作用4、人造卫星进入轨道作匀速圆周运动,卫星内的物体以下说法中正确的有C卫星内物体仍受重力作用D卫星内的物体没有重力作用而有向心力作用①处于完全失重状态,所受重力为零②处于完全失重状态,但仍受重力作用。①所受的重力就是维持它跟随卫星一起作匀速圆周运动所属的向心力。②处于平衡状态,即所受外力为零。\nA.②③B.①④C.②④⑬④5、航天飞机中的物体处于失重状态是指这个物体A.不受地球的吸引力B.地球吸引力和向心力平衡C.对支持它的物体的压力为零D.以上说法都不对6、宇航员在绕地球做匀速圆周运动的航天飞机中,会处于完全失重状态中,则下述说法中正确的是:()A.宇航员仍受重力作用B.宇航员受力平衡C.重力仍产生加速度D.重力正好为宇航员绕地球作匀速圆周运动提供所需的向心力7、一宇宙飞船在离地面h的轨道上做匀速圆周运动,质量为m的物块用弹簧秤挂起,相对于飞船静止,则此物块所受的合外力的大小为:(已知地球半径为R,地面的重力加速度为g)6、一地球卫星高度等于地球半径,用弹簧秤将一物体悬挂在卫星内,物体在地球表面受到的重力为98N,则此时弹簧秤的读数为N,物体受到的地球引力N.5、卫星的发射与回收仁某人造地球卫星沿圆周运动,由于空气阻力,有关卫星的一些物理量将变化,以下判断正\n确的是:(D)A、向心加速度变小B、线速度变小C、角速度不变。D运行周期变小E、机械能变大。说明:卫星的机械能若在向其它形式的能转化,则高度将会减小;而若有其它形式的能转化为卫星的机械能,则其高度将会增大。2、发射通讯卫星的常用方法是:先用火箭将卫星送入一级近地轨道运行,然后再适时开动运载火箭,经过过渡轨道将其送入与地球自转同步的运动轨道,则变轨后与变轨前()A、机械能增大,动能减小B、机械能减小,动能增大C、机械能增大,动能增小D>机械能减小,动能减小3、进入地球轨道的末级火箭和卫星,由于火箭的燃料已经用完,将用于连接火箭和卫星的爆炸螺栓炸开,将卫星和末级火箭外壳分开,火箭外壳被抛开,此后(B)A、卫星将进入较低的轨道环绕地球旋转。B、卫星将进入较高的轨道环绕地球旋转。C、卫星和火箭均在原轨道上,卫星在前火箭在后。D、以上均有可能。4、宇宙飞船要与轨道空间站对接,飞船为了追上轨道空间站()A.只能从较低轨道上加速。B・只能从较高轨道上加速C.只能从空间站同一高度轨道上加速D.无论从什么轨道上加速都可以5、发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火,使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3。轨道仁2切于Q点,轨道2、3相切于P点,如图2所示,则当卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:()A.卫星在轨道3上的速率大于在轨道1上的速率B.卫星在轨道3上的角速度小于在轨道1上的角速度\n2上经过Q点吋的加速度3上经过P点的加速度C.卫星在轨道1上经过Q点吋的加速度大于它在轨道D.卫星在轨道2上经过P点吋的加速度等于它在轨道6、宇航员在某一行星上以速度V。竖直上抛一个物体,经t秒后落回手中。已知该行星的半径为R①若在该星球上离地高h处,以初速度V。平抛一物体,水平射程为多少?②要使物体沿水平方向抛出而不落回星球表面,沿星球表面的抛出速度至少应为多大?解析:当平抛物体的初速度不太大时,在平抛物体运动的范围内,地面可看作是水平的,重力加速度的大小不变、方向始终垂直于水平面。如果平抛物体的初速度很大,其射程就会很远,重力加速度的大小和方向就要变化,就不可能作平抛运动。01>设在地面附近的重力加速度为g,由于物体做竖直上抛运动:2v0①-Vo=Vo-gt即g=t若翅■体作平抛运动有:X=vot②12h=gt③所以x=hvt2o2、要使翅件不落回星球表面,就要求万有引力*全提供向心力,而在星球表面附近,重力约等于万有引力。故:\2mg=VmR由①④得:2Rv0t\n7、宇宙中某星球的半径为地球的2倍,星球的质量为地球的2倍,若在该星球上发射一颗卫星,使其环绕该星运动。问该卫星在该星附近轨道发射需最小速度是多少?18、某物体在地面上的重力为160N,现将它放置在卫星中,在卫星以加速度a=~g随火箭2加速上升的过程中,当物体与卫星中的支持物的相互挤压力为90N时,求此时卫星距地球表3km,取重力加速度g=10m\s2x面有多远?(地球半径甘6.4x10解析:因为卫星在加速上升的过程中,卫星内的物体与卫星的相互挤压力小与其地面上重力,故应该考虑由于高度的变化而引起的重力加速度的变化。设此时火箭离地球表面的高度为h,火箭受到的支持力为由牛顿第二定律得:N—mg=ma在h咼处:G在地球表面处:Mm=mg2(Rh)Mm\nN,物体受到的重力为mg▼mg由①②③得:h=R(mg4km9.2003年10月15日,我国成功发射了第一艘载人宇宙飞船起飞质量为479.8x1Q3kgj火箭点火升空,飞船进入预定轨道。“神舟五号”o火箭全长58.3m.“神舟五号”环绕地球飞行14圈用的吋间是21h0飞船点火竖直升空吋,宇航员杨利伟感觉“超重感比较强",▲仪器显示他对座舱的最大压力等于他体重的5倍。飞船进入预定轨道后,杨利伟还多次在卡3km,地面的重6.4x10度起来。假设飞船运行的轨道是圆形轨道。2,计算结果取两位有效数字)。g=10m\s(地球半径R取①是分析宇航员在舱内“飘浮起来"②求火箭点火发射时,火箭的最大推力?③估算飞船运行轨道距离地面的高度?的现象产生的原因?72(2.4x105m)(3.2x10(完全失重)V飘浮mg10、天文工作者观测到某行星的半径为R,它有一颗卫星,轨道半径为r,绕行星公转周期为T。若要在此行星的表面将一颗质量为m的卫星发射出去,使其绕该行星运转,求至少应对卫星做多少功?设行星表面无任何气体,不考虑行星的自转。11>天文工作者观测到某行星的半径为Ri,自转周期为To它有一颗卫星,轨道半径为R绕行星公转周期为T2o若要在此行星的表面将一颗质量为m的卫星发射出去,使其绕该行星运转,求至少应对卫星做多少功?(设行星表面无任何气体,万有引力恒量为G)11>设想宇航员完成了对火星表面的科学考察任务后,乘坐返回舱返回围绕火星作匀速运周运动的轨道舱,如图所示。为了安全,返回舱与轨道舱对接时必须具有相同的速度。已知返回舱与人的总质量为m火星表面的重力加速度为g,火星的半径为R,轨道舱到火星中\no心的距离为r,返回舱返回过程中需要克服火星引力做功W=mgR1-_),不计火星表面大r气对返回舱的阻力和火星自转的影响,则该宇航员乘坐的返回舱至少需要获得多少能量才能返回轨道舱?解析:设轨道舱的质量为m,速率大小为VoMmo2~返回舱与人在火星附近。MmG=mg②-22mvr1EK=2R)④W=mgR(1-rE=Ek+W⑤R由①②③④⑤得E=mgR(1-)2r太阳在这个椭圆的一个开普勒第二定律又叫而积勒第三定律又叫面积定律。实践证明。开普勒三定律也适用于人造地球卫星。如果人造地球卫星(或飞船)沿半径为在A位置开动制动发动机,使卫星速度降低并转移到与地球相切于飞船沿着以地心为焦点的椭圆轨道运动厂如图所示。问在这之后,卫(已知地球半径为R地球表面的重力加速度为g)r的圆形轨道绕地球运动,现卫星要返回地面,可盘的椭圆轨道,从而使解析:对近地小圆轨道有mg=71GMm2R29即GM=RR过多长时间着陆?\n12.阅读下列信息,并结合该信息解题。开普勒在1909-1919年发表了著名的开普勒行星三定律:第一定律:所有行星分别在大小不同的椭圆轨道上围绕太阳运动,焦点上。开普勒第一定律又叫轨道定律。第二定律:太阳和行星的连线在相等的时间内扫过的面积相等。定律。第三定律:所有行星在椭圆轨道的半长轴的三次方跟公转周期的平方的比值都相等。开普2T3a2=47TGM应用开普勒第三定律对变速椭圆轨道\n对变速椭圆轨道应用①②③式可求显然,着陆吋间为t=TT=(Rr)RrR2g答案:(Rr)R2R2g2\n13、航天飞机是能往返于地球与太空间的载人飞行器。利用航天飞机可将人造卫星送预定轨道,也可以到太空维修出现故障的地球卫星。①乘航天飞机对在离地面l#800km的圆形轨道上的人造卫星进行维修时,航天飞机的速度与卫星的速度必须基本相同。已知地球的半径为R=6400km,地球表面的重力加速度g=9.8m\s2,试求维修卫星时航天飞机的速度?②航天飞机无动力滑翔蠶当航天飞机的速度达到54km\h时从尾部弹出减速伞,以使减速飞机迅速减速。设航天飞机质量为1001,弹岀减速伞后在水平跑道上滑行的距离不超过300m,求打开减速伞后航天飞机受到的平均阻力至少为多大?6、宇宙的探索1、中子星是由密集的中子组成的星体,具有极大的密度。通过观察已知的某中子星的自转角速度3,根据中子星并没有因为自转而解体的事实,人们可以推知中子星的密度。试写出中子星最小密度的表达式?解析:设中子星表面有一个质量为m的中子,则它随中子星一起做圆周运动的向心力由它与中子星之间的万有引力提供。由题知:F.>F-Mmo①2向即g>mr2r又p:nM/\34R3②33厂3兀2及密度的最小牍4G4G由①②式得:pn2、(03全国)中子星是恒星演化过程的一种可能结果,它的密度很大。现有一中子星,1它的自转周期为T=SO同该中子星的最小密度应是多少才难维持该星体的稳致因自转而30_lim/)瓦解。计算时星体可视为均为球体。(引力常数G=6.67x10◎解析:物体位于中子星赤道上时,随中子星自转所需的向心力最大,离新趋最强最\n易挣脱引力四是中子星瓦解。只有当赤道上的物体受到的万有引力大于或等于它随星体所需M,半径为R,自转角速度为,位于赤道处的小物的向心力时:中'牛星才不会瓦解。设中负星的密度为,质量为为m则有:GMm、=71mp3④代入数据解得341.2710kg.2R33、假若地球的自转角速度可以增大,为使大量的地表水不致因角速度太大而被甩出,地由以上各式得2GT球自转的周期不得小于多少?(设水只受万有引力。地球平均密度p=5・5xl03kg/m3,地球的平均半径R=6.4xW3km,G=6.67x10-11N-m2/kg2。)解析:在学习匀速周运动时,当外界提供的向心力F与物体作匀速周运动所需要的向心力刚好吻合时,物体做稳定的匀速圆周运动。那么地球要保持自身的相对稳定,需要依\n靠其自转使地球对其任何一部分的作用力恰好提供这一部分做圆周运动的向心力。设在地球表面上任选一部分质量为m的水团,MR分别为地球的质量和半径。喲1\n靠其自转使地球对其任何一部分的作用力恰好提供这一部分做圆周运动的向心力。设在地球表面上任选一部分质量为m的水团,MR分别为地球的质量和半径。喲1\n所示,之所以该水团未被甩岀去,是因为地球对它的万有引力刚好提供它随地球自转的向心力:MmR2>F由于题目没有告诉地球的质量,所以,需进一步寻找关系:pV=p(2)以上两式联立求解得:TG=0.5x104s=5x103s=1.39ho4、根据天文学家观测,月球半径为R=1738km,月球表面的重力加速度约为地球表面1重力加速度的,月球表面在阳光的照射下温度可达127CO,此时水蒸气分子的平均速度达62到V)=2000m\So试分析月球表面没水的原因。(取地球表面的重力加速度g=9.8m\s)解析:初看题目的已知条件与所问结果找不到直接联系的东西•但想到若月球表面有水则月球在转动的同时,月球表面的水团也在随月球转动•由圆周运动知识可知:做圆周运动的物体,当外界提供的向心力F与物体作圆周运动所需要的向心力刚好吻合时,物体做稳定的匀速圆周运动。若外界提供的向心力F小于物体作圆周运动所需要的向心力时,物体将做离心运动而被甩岀去・设在地球表面上任选一部分质量为m的水团,MR分别为地球的质量和半径。如图1所示,之所以该水团未被甩出去,是因为地球对它的万有引力刚好提供它随地球自转的向心力:假定目球表面有水,则这些水在127CO时达到的平均速度\s必须小于月球的第一宇宙速度,否则这些水将不会落回月球表面,导致月球表面无水。取质量为m的某水分子。MmG-2R=m(1)0)MmG=mg月(2)\n2R1由①②③得:Vi=g;]=gR月=1700m\s