- 693.00 KB
- 2022-07-28 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
2010-2011学年高中数学复习资料一新人教版必修3一、选择题1.某工厂对一批产品进行了抽样检测.右图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品96981001021041060.1500.1250.1000.0750.050克频率/组距第8题图净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是().A.90B.75C.60D.45【解析】:产品净重小于100克的概率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,设样本容量为则,所以,净重大于或等于98克并且小于104克的产品的概率为(0.100+0.150+0.125)×2=0.75,所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.故选A.答案:A【命题立意】:本题考查了统计与概率的知识,读懂频率分布直方图,会计算概率以及样本中有关的数据.2.在区间[-1,1]上随机取一个数x,的值介于0到之间的概率为(A.B.C.D.【解析】:在区间[-1,1]上随机取一个数x,即时,要使的值介于0到之间,需使或∴或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.答案:A【命题立意】:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值的范围,再由长度型几何概型求得.3.(在区间上随机取一个数x,的值介于0到之间的概率为().A.B.C.D.【解析】:在区间上随机取一个数x,即时,要使的值介于0到用心爱心专心\n之间,需使或,区间长度为,由几何概型知的值介于0到之间的概率为.故选A.答案:Aw【命题立意】:本题考查了三角函数的值域和几何概型问题,由自变量x的取值范围,得到函数值的范围,再由长度型几何概型求得4.)考察正方体6个面的中心,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,则所得的两条直线相互平行但不重合的概率等于(A)(B)(C)(D)ABCDEF[解析]如图,甲从这6个点中任意选两个点连成直线,乙也从这6个点中任意选两个点连成直线,共有种不同取法,其中所得的两条直线相互平行但不重合有共12对,所以所求概率为,选D5.)考察正方体6个面的中心,从中任意选3个点连成三角形,再把剩下的3个点也连成三角形,则所得的两个三角形全等的概率等于A.1B.C.D.0【解析】依据正方体各中心对称性可判断等边三角形有个.由正方体各中心的对称性可得任取三个点必构成等边三角形,故概率为1,选A【答案】A甲、乙、丙、丁个足球队参加比赛,假设每场比赛各队取胜的概率相等,现任意将这个队分成两个组(每组两个队)进行比赛,胜者再赛,则甲、乙相遇的概率为A.B.C.D.答案:D【解析】所有可能的比赛分组情况共有种,甲乙相遇的分组情况恰好有6种,故选.7.)为了庆祝六一儿童节,某食品厂制作了种不同的精美卡片,每袋食品随机装入一张卡片,集齐种卡片可获奖,现购买该种食品袋,能获奖的概率为A.用心爱心专心\nB.C.D.w.w.w.k.s.5.u.c.o.m答案:D【解析】故选D8.)设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定【答案】A【解析】甲批次的平均数为0.617,乙批次的平均数为0.6139.)对变量x,y有观测数据理力争(,)(i=1,2,…,10),得散点图1;对变量u,v有观测数据(,)(i=1,2,…,10),得散点图2.由这两个散点图可以判断。(A)变量x与y正相关,u与v正相关(B)变量x与y正相关,u与v负相关(C)变量x与y负相关,u与v正相关(D)变量x与y负相关,u与v负相关用心爱心专心\n解析:由这两个散点图可以判断,变量x与y负相关,u与v正相关,选C10.)ABCD为长方形,AB=2,BC=1,O为AB的中点,在长方形ABCD内随机取一点,取到的点到O的距离大于1的概率为(A)(B)(C)(D)【解析】长方形面积为2,以O为圆心,1为半径作圆,在矩形内部的部分(半圆)面积为因此取到的点到O的距离小于1的概率为÷2=取到的点到O的距离大于1的概率为【答案】B11.设矩形的长为,宽为,其比满足∶=,这种矩形给人以美感,称为黄金矩形。黄金矩形常应用于工艺品设计中。下面是某工艺品厂随机抽取两个批次的初加工矩形宽度与长度的比值样本:甲批次:0.5980.6250.6280.5950.639乙批次:0.6180.6130.5920.6220.620根据上述两个样本来估计两个批次的总体平均数,与标准值0.618比较,正确结论是A.甲批次的总体平均数与标准值更接近B.乙批次的总体平均数与标准值更接近C.两个批次总体平均数与标准值接近程度相同D.两个批次总体平均数与标准值接近程度不能确定【答案】A【解析】甲批次的平均数为0.617,乙批次的平均数为0.613【备考提示】用以上各数据与0.618(或0.6)的差进行计算,以减少计算量,说明多思则少算。12.)某单位共有老、中、青职工430人,其中青年职工160人,中年职工人数是老年职工人数的2倍。为了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为(A)9(B)18(C)27(D)36答案B.用心爱心专心\n解析:由比例可得该单位老年职工共有90人,用分层抽样的比例应抽取18人.13.)一个容量100的样本,其数据的分组与各组的频数如下表组别频数1213241516137则样本数据落在上的频率为A.0.13B.0.39C.0.52D.0.64解析由题意可知频数在的有:13+24+15=52,由频率=频数总数可得0.52.故选C.14.)若事件与相互独立,且,则的值等于(A)(B)(C)(D)【答案】B【解析】==15.)在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”。根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是(A)甲地:总体均值为3,中位数为4(B)乙地:总体均值为1,总体方差大于0(C)丙地:中位数为2,众数为3(D)丁地:总体均值为2,总体方差为3【答案】D【解析】根据信息可知,连续10天内,每天的新增疑似病例不能有超过7的数,选项A中,中位数为4,可能存在大于7的数;同理,在选项C中也有可能;选项B中的总体方差大于0,叙述不明确,如果数目太大,也有可能存在大于7的数;选项D中,根据方差公式,如果有大于7的数存在,那么方差不会为3,故答案选D.1.)某单位200名职工的年龄分布情况如图2,现要从中抽取40名职工作样本,用系统抽样法,将全体职工随机按1-200编号,并按编号顺序平均分为40组(1-5号,6-10号…,196-200号).若第5组抽出的号码为22,则第8组抽出的号码应是。若用分层抽样方法,则40岁以下年龄段应抽取人.用心爱心专心\n图2【答案】37,20【解析】由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.40岁以下年龄段的职工数为,则应抽取的人数为人.2.)已知离散型随机变量的分布列如右表.若,,则,.【解析】由题知,,,解得,.3.(2009浙江卷文)某个容量为的样本的频率分布直方图如下,则在区间上的数据的频数为.30【命题意图】此题考查了频率分布直方图,通过设问既考查了设图能力,也考查了运用图表解决实际问题的水平和能力【解析】对于在区间的频率/组距的数值为,而总数为100,因此频数为30w.w.w.k.s.5.u.c.o.m4.)若随机变量,则=________.[解析]5.)从长度分别为2、3、4、5的四条线段中任意取出三条,则以这三条线段为边可以构成三角形的概率是________【解析】依据四条边长可得满足条件的三角形有三种情况:2、3、4或3、4、5或2、4、5,故=0.75.【答案】0.756.(2009江苏卷)用心爱心专心\n现有5根竹竿,它们的长度(单位:m)分别为2.5,2.6,2.7,2.8,2.9,若从中一次随机抽取2根竹竿,则它们的长度恰好相差0.3m的概率为【解析】考查等可能事件的概率知识。从5根竹竿中一次随机抽取2根的可能的事件总数为10,它们的长度恰好相差0.3m的事件数为2,分别是:2.5和2.8,2.6和2.9,所求概率为0.2。7.(2009江苏卷)某校甲、乙两个班级各有5名编号为1,2,3,4,5的学生进行投篮练习,每人投10次,投中的次数如下表:学生1号2号3号4号5号甲班67787乙班67679则以上两组数据的方差中较小的一个为=.【解析】考查统计中的平均值与方差的运算。甲班的方差较小,数据的平均值为7,故方差8.某企业有3个分厂生产同一种电子产品,第一、二、三分厂的产量之比为1:2:1,用分层抽样方法(每个分厂的产品为一层)从3个分厂生产的电子产品中共取100件作使用寿命的测试,由所得的测试结果算得从第一、二、三分厂取出的产品的使用寿命的平均值分别为980h,1020h,1032h,则抽取的100件产品的使用寿命的平均值为h.【解析】=1013【答案】10139.)甲、乙、丙三人将参加某项测试,他们能达标的概率分别是0.8、0.6、0.5,则三人都达标的概率是,三人中至少有一人达标的概率是。【答案】0.240.76【解析】三人均达标为0.8×0.6×0.5=0.24,三人中至少有一人达标为1-0.24=0.7610.)下图是样本容量为200的频率分布直方图。根据样本的频率分布直方图估计,样本数据落在【6,10】内的频数为,数据落在(2,10)内的概率约为。【答案】64【解析】观察直方图易得频数为,频率为11.)一个总体分为A,B用心爱心专心\n两层,用分层抽样方法从总体中抽取一个容量为10的样本。已知B层中每个个体被抽到的概率都为,则总体中的个体数为120.解:设总体中的个体数为,则12.)一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本,已知B层中甲、乙都被抽到的概率为,则总体中的个数数位50。【答案】:40【解析】由条件易知层中抽取的样本数是2,设层总体数是,则又由层中甲、乙都被抽到的概率是=,可得,所以总体中的个数是13.)某学院的A,B,C三个专业共有1200名学生,为了调查这些学生勤工俭学的情况,拟采用分层抽样的方法抽取一个容量为120的样本。已知该学院的A专业有380名学生,B专业有420名学生,则在该学院的C专业应抽取____名学生。【考点定位】本小题考查分层抽样,基础题。解析:C专业的学生有,由分层抽样原理,应抽取名。14.)点A为周长等于3的圆周上的一个定点,若在该圆周上随机取一点B,则劣弧AB的长度小于1的概率为。解析解析:如图可设,则,根据几何概率可知其整体事件是其周长,则其概率是。w。w.w.k.s.5.u.c.o.m15.)若某学校要从5名男生和2名女生中选出3人作为上海世博会的志愿者,则选出的志愿者中男女生均不少于1名的概率是(结果用最简分数表示)。【答案】【解析】因为只有2名女生,所以选出3人中至少有一名男生,当选出的学生全是男生时有:,概率为::,所以,均不少于1名的概率为:1-。16.)5个人站成一排,其中甲、乙两人不相邻的排法有种(用数字作答).用心爱心专心\n【答案】72解析可恩两个步骤完成,第一步骤先排除甲乙外的其他三人,有种,第二步将甲乙二人插入前人形成的四个空隙中,有种,则甲、乙两不相邻的排法有种。17.)从一堆苹果中任取5只,称得它们的质量如下(单位:克)125124121123127则该样本标准差(克)(用数字作答).【答案】2解析因为样本平均数,则样本方差所以18.)样本容量为200的频率分布直方图如图所示.根据样本的频率分布直方图估计,样本数据落在内的频数为,数据落在内的概率约为【答案】640.4【解析】由于在范围内频数、组距是0.08,所以频率是0.08*组距=0.32,而频数=频率*样本容量,所以频数=(0.08*4)*200=64同样在范围内的频数为16,所以在范围内的频数和为80,概率为80/200=0.4用心爱心专心