小学数学复习资料 57页

  • 181.50 KB
  • 2022-07-29 发布

小学数学复习资料

  • 57页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
------------------------------------------作者xxxx------------------------------------------日期xxxx小学数学复习资料\n【精品文档】1、每份数×份数=总数总数÷每份数=份数总数÷份数=每份数 2、1倍数×倍数=几倍数几倍数÷1倍数=倍数几倍数÷倍数=1倍数 3、速度×时间=路程路程÷速度=时间路程÷时间=速度 4、单价×数量=总价总价÷单价=数量总价÷数量=单价 5、工作效率×工作时间=工作总量工作总量÷工作效率=工作时间工作总量÷工作时间=工作效率 6、加数+加数=和和-一个加数=另一个加数 7、被减数-减数=差被减数-差=减数差+减数=被减数 8、因数×因数=积积÷一个因数=另一个因数 9、被除数÷除数=商被除数÷商=除数商×除数=被除数 小学数学图形计算公式 1、正方形C周长S面积a边长【精品文档】\n【精品文档】周长=边长×4C=4a面积=边长×边长S=a×a 2、正方体V:体积a:棱长表面积=棱长×棱长×6S表=a×a×6体积=棱长×棱长×棱长V=a×a×a 3、长方形 C周长S面积a边长 周长=(长+宽)×2 C=2(a+b) 面积=长×宽 S=ab 4、长方体 V:体积s:面积a:长b:宽h:高 (1)表面积(长×宽+长×高+宽×高)×2 S=2(ab+ah+bh) (2)体积=长×宽×高 V=abh 5三角形 s面积a底h高 面积=底×高÷2 s=ah÷2 三角形高=面积×2÷底 【精品文档】\n【精品文档】三角形底=面积×2÷高 6平行四边形 s面积a底h高 面积=底×高 s=ah 7梯形 s面积a上底b下底h高 面积=(上底+下底)×高÷2 s=(a+b)×h÷2 8圆形 S面积C周长∏d=直径r=半径 (1)周长=直径×∏=2×∏×半径 C=∏d=2∏r (2)面积=半径×半径×∏ 9圆柱体 v:体积h:高s;底面积r:底面半径c:底面周长 (1)侧面积=底面周长×高 (2)表面积=侧面积+底面积×2 (3)体积=底面积×高 (4)体积=侧面积÷2×半径 10圆锥体 【精品文档】\n【精品文档】v:体积h:高s;底面积r:底面半径 体积=底面积×高÷3 总数÷总份数=平均数 和差问题的公式 (和+差)÷2=大数 (和-差)÷2=小数 和倍问题 和÷(倍数-1)=小数 小数×倍数=大数 (或者和-小数=大数) 差倍问题 差÷(倍数-1)=小数 小数×倍数=大数 (或小数+差=大数) 植树问题 1非封闭线路上的植树问题主要可分为以下三种情形: ⑴如果在非封闭线路的两端都要植树,那么: 株数=段数+1=全长÷株距-1 全长=株距×(株数-1) 【精品文档】\n【精品文档】株距=全长÷(株数-1) ⑵如果在非封闭线路的一端要植树,另一端不要植树,那么: 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 ⑶如果在非封闭线路的两端都不要植树,那么: 株数=段数-1=全长÷株距-1 全长=株距×(株数+1) 株距=全长÷(株数+1) 2封闭线路上的植树问题的数量关系如下 株数=段数=全长÷株距 全长=株距×株数 株距=全长÷株数 盈亏问题 (盈+亏)÷两次分配量之差=参加分配的份数 (大盈-小盈)÷两次分配量之差=参加分配的份数 (大亏-小亏)÷两次分配量之差=参加分配的份数 【精品文档】\n【精品文档】相遇问题 相遇路程=速度和×相遇时间 相遇时间=相遇路程÷速度和 速度和=相遇路程÷相遇时间 追及问题 追及距离=速度差×追及时间 追及时间=追及距离÷速度差 速度差=追及距离÷追及时间 流水问题 顺流速度=静水速度+水流速度 逆流速度=静水速度-水流速度 静水速度=(顺流速度+逆流速度)÷2 水流速度=(顺流速度-逆流速度)÷2 浓度问题 溶质的重量+溶剂的重量=溶液的重量 溶质的重量÷溶液的重量×100%=浓度 溶液的重量×浓度=溶质的重量 溶质的重量÷浓度=溶液的重量 利润与折扣问题 利润=售出价-成本 利润率=利润÷成本×100%=(售出价÷成本-1)×100% 【精品文档】\n【精品文档】涨跌金额=本金×涨跌百分比 折扣=实际售价÷原售价×100%(折扣<1) 利息=本金×利率×时间 税后利息=本金×利率×时间×(1-20%) 长度单位换算 1千米=1000米1米=10分米 1分米=10厘米1米=100厘米 1厘米=10毫米 面积单位换算 1平方千米=100公顷 1公顷=10000平方米 1平方米=100平方分米 1平方分米=100平方厘米 1平方厘米=100平方毫米 体(容)积单位换算 1立方米=1000立方分米 1立方分米=1000立方厘米 1立方分米=1升 1立方厘米=1毫升 1立方米=1000升 重量单位换算 1吨=1000千克 【精品文档】\n【精品文档】1千克=1000克 1千克=1公斤 人民币单位换算 1元=10角 1角=10分 1元=100分 时间单位换算 1世纪=100年1年=12月 大月(31天)有:1\3\5\7\8\10\12月 小月(30天)的有:4\6\9\11月 平年2月28天,闰年2月29天 平年全年365天,闰年全年366天 1日=24小时1时=60分 1分=60秒1时=3600秒 小学数学几何形体周长面积体积计算公式 1、长方形的周长=(长+宽)×2C=(a+b)×2 2、正方形的周长=边长×4C=4a 3、长方形的面积=长×宽S=ab 4、正方形的面积=边长×边长S=a.a=a 5、三角形的面积=底×高÷2S=ah÷2 【精品文档】\n【精品文档】6、平行四边形的面积=底×高S=ah 7、梯形的面积=(上底+下底)×高÷2S=(a+b)h÷2 8、直径=半径×2d=2r半径=直径÷2r=d÷2 9、圆的周长=圆周率×直径=圆周率×半径×2c=πd=2πr 10、圆的面积=圆周率×半径×半径 定义定理公式 三角形的面积=底×高÷2。公式S=a×h÷2 正方形的面积=边长×边长公式S=a×a 长方形的面积=长×宽公式S=a×b 平行四边形的面积=底×高公式S=a×h 梯形的面积=(上底+下底)×高÷2公式S=(a+b)h÷2 内角和:三角形的内角和=180度。 长方体的体积=长×宽×高公式:V=abh 长方体(或正方体)的体积=底面积×高公式:V=abh 正方体的体积=棱长×棱长×棱长公式:V=aaa 【精品文档】\n【精品文档】圆的周长=直径×π公式:L=πd=2πr 圆的面积=半径×半径×π公式:S=πr2 圆柱的表(侧)面积:圆柱的表(侧)面积等于底面的周长乘高。公式:S=ch=πdh=2πrh 圆柱的表面积:圆柱的表面积等于底面的周长乘高再加上两头的圆的面积。公式:S=ch+2s=ch+2πr2 圆柱的体积:圆柱的体积等于底面积乘高。公式:V=Sh 圆锥的体积=1/3底面×积高。公式:V=1/3Sh 分数的加、减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 分数的乘法则:用分子的积做分子,用分母的积做分母。 分数的除法则:除以一个数等于乘以这个数的倒数。 单位换算 (1)1公里=1千米1千米=1000米【精品文档】\n【精品文档】1米=10分米1分米=10厘米1厘米=10毫米 (2)1平方米=100平方分米1平方分米=100平方厘米1平方厘米=100平方毫米 (3)1立方米=1000立方分米1立方分米=1000立方厘米1立方厘米=1000立方毫米 (4)1吨=1000千克1千克=1000克=1公斤=2市斤 66平方米 (6)1升=1立方分米=1000毫升1毫升=1立方厘米 数量关系计算公式方面 1.单价×数量=总价 2.单产量×数量=总产量 3.速度×时间=路程 4.工效×时间=工作总量 小学数学定义定理公式(二) 一、算术方面 1.加法交换律:两数相加交换加数的位置,和不变。 【精品文档】\n【精品文档】2.加法结合律:三个数相加,先把前两个数相加,或先把后两个数相加,再同第 三个数相加,和不变。 3.乘法交换律:两数相乘,交换因数的位置,积不变。 4.乘法结合律:三个数相乘,先把前两个数相乘,或先把后两个数相乘,再和第三个数相乘,它们的积不变。 5.乘法分配律:两个数的和同一个数相乘,可以把两个加数分别同这个数相乘,再把两个积相加,结果不变。如:(2+4)×5=2×5+4×5。 6.除法的性质:在除法里,被除数和除数同时扩大(或缩小)相同的倍数,商不变。0除以任何不是0的数都得0。 7.等式:等号左边的数值与等号右边的数值相等的式子叫做等式。等式的基本性质:等式两边同时乘以(或除以)一个相同的数,等式仍然成立。 8.方程式:含有未知数的等式叫方程式。 9.一元一次方程式:含有一个未知数,并且未知数的次【精品文档】\n【精品文档】数是一次的等式叫做一元一次方程式。 学会一元一次方程式的例法及计算。即例出代有χ的算式并计算。 10.分数:把单位“1”平均分成若干份,表示这样的一份或几分的数,叫做分数。 11.分数的加减法则:同分母的分数相加减,只把分子相加减,分母不变。异分母的分数相加减,先通分,然后再加减。 12.分数大小的比较:同分母的分数相比较,分子大的大,分子小的小。异分母的分数相比较,先通分然后再比较;若分子相同,分母大的反而小。 13.分数乘整数,用分数的分子和整数相乘的积作分子,分母不变。 14.分数乘分数,用分子相乘的积作分子,分母相乘的积作为分母。 15.分数除以整数(0除外),等于分数乘以这个整数的倒数。 16.真分数:分子比分母小的分数叫做真分数。 【精品文档】\n【精品文档】17.假分数:分子比分母大或者分子和分母相等的分数叫做假分数。假分数大于或等于1。 18.带分数:把假分数写成整数和真分数的形式,叫做带分数。 19.分数的基本性质:分数的分子和分母同时乘以或除以同一个数(0除外),分数的大小不变。 20.一个数除以分数,等于这个数乘以分数的倒数。 21.甲数除以乙数(0除外),等于甲数乘以乙数的倒数。第一章数和数的运算 整数:自然数和0都是整数。 自然数 :我们在数物体的时候,用来表示物体个数的1,2,3……叫做自然数。 一个物体也没有,用0表示。0也是自然数。 计数单位 :一(个)、十、百、千、万、十万、百万、千万、亿……都是计数单位。 【精品文档】\n【精品文档】每相邻两个计数单位之间的进率都是10。这样的计数法叫做十进制计数法。 数位 :计数单位按照一定的顺序排列起来,它们所占的位置叫做数位。 数的整除:整数a除以整数b(b≠0),除得的商是整数而没有余数,我们就说a能被b整除,或者说b能整除a。 如果数a能被数b(b≠0)整除,a就叫做b的倍数,b就叫做a的约数(或a的因数)。倍数和约数是相互依存的。因为35能被7整除,所以35是7的倍数,7是35的约数。 一个数的约数的个数是有限的,其中最小的约数是1,最大的约数是它本身。例如:10的约数有1、2、5、10,其中最小的约数是1,最大的约数是10。【精品文档】\n【精品文档】一个数的倍数的个数是无限的,其中最小的倍数是它本身。3的倍数有:3、6、9、12……其中最小的倍数是3,没有最大的倍数。个位上是0、2、4、6、8的数,都能被2整除,例如:202、480、304,都能被2整除。。 个位上是0或5的数,都能被5整除,例如:5、30、405都能被5整除。。 一个数的各位上的数的和能被3整除,这个数就能被3整除,例如:12、108、204都能被3整除。一个数各位数上的和能被9整除,这个数就能被9整除。能被3整除的数不一定能被9整除,但是能被9整除的数一定能被3整除。能被2整除的数叫做偶数。   不能被2整除的数叫做奇数。 0也是偶数。自然数按能否被2整除的特征可分为奇数和偶数。【精品文档】\n【精品文档】一个数,如果只有1和它本身两个约数,这样的数叫做质数(或素数),100以内的质数有:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97。 一个数,如果除了1和它本身还有别的约数,这样的数叫做合数,例如4、6、8、9、12都是合数。1不是质数也不是合数,自然数除了1外,不是质数就是合数。自然数按其约数的个数的不同分:质数、合数和1。 每个合数都可以写成几个质数相乘的形式。其中每个质数都是这个合数的因数,叫做这个合数的质因数,例如15=3×5,3和5叫做15的质因数。 把一个合数用质因数相乘的形式表示出来,叫做分解质因数。例如把28分解质因数:28=2*2*7【精品文档】\n【精品文档】几个数公有的约数,叫做这几个数的公约数。其中最大的一个,叫做这几个数的最大公约数,例如12的约数有1、2、3、4、6、12;18的约数有1、2、3、6、9、18。其中,1、2、3、6是12和18的公约数,6是它们的最大公约数。公约数只有1的两个数,叫做互质数。 成为互质关系的两个数:1和任何自然数互质;相邻的两个自然数互质; 两个不同的质数互质。当合数不是质数的倍数时,这个合数和这个质数互质;两个合数的公约数只有1时,这两个合数互质。 如果几个数中任意两个都互质,就说这几个数两两互质。如果较小数是较大数的约数,那么较小数就是这两个数的最大公约数。 如果两个数是互质数,它们的最大公约数就是1。 【精品文档】\n【精品文档】        几个数公有的倍数,叫做这几个数的公倍数,其中最小的一个,叫做这几个数的最小公倍数,如2的倍数有2、4、6、8、10、12、14、16、18……3的倍数有3、6、9、12、15、18……其中6、12、18……是2、3的公倍数,6是它们的最小公倍数。。 如果较大数是较小数的倍数,那么较大数就是这两个数的最小公倍数。  如果两个数是互质数,那么这两个数的积就是它们的最小公倍数。 几个数的公约数的个数是有限的,而几个数的公倍数的个数是无限的。(二)小数1.小数的意义 :把整数1平均分成10份、100份、1000份……得到的十分之几、百分之几、千分之几……可以用小数表示。             一位小数表示十分之几,两位小数表示百分之几,三位小数表示千分之几…… 【精品文档】\n【精品文档】在小数里,每相邻两个计数单位之间的进率都是10。小数部分的最高分数单位“十分之一”和整数部分的最低单位“一”之间的进率也是10。 2小数的分类  纯小数:整数部分是零的小数,叫做纯小数。例如:0.25、0.368都是纯小数。 带小数:整数部分不是零的小数,叫做带小数。例如:3.25、5.26都是带小数。有限小数:小数部分的数位是有限的小数,叫做有限小数。例如:41.7、25.3、0.23都是有限小数。无限小数:小数部分的数位是无限的小数,叫做无限小数。例如:4.33……3.1415926……无限不循环小数:一个数的小数部分,数字排列无规律且位数无限,这样的小数叫做无限不循环小数。例如:∏        【精品文档】\n【精品文档】循环小数:一个数的小数部分,有一个数字或者几个数字依次不断重复出现,这个数叫做循环小数。例如:3.555……0.0333……12.109109…… 一个循环小数的小数部分,依次不断重复出现的数字叫做这个循环小数的循环节。例如:3.99……的循环节是“9”,0.5454……的循环节是“54”。 纯循环小数:循环节从小数部分第一位开始的,叫做纯循环小数。例如:3.111……0.5656…… 混循环小数:循环节不是从小数部分第一位开始的,叫做混循环小数。3.1222……0.03333……写循环小数的时候,为了简便,小数的循环部分只需写出一个循环节,并在这个循环节的首、末位数字上各点一个圆点。如果循环节只有一个数字,就只在它的上面点一个点。(三)分数1分数:把单位“1”【精品文档】\n【精品文档】平均分成若干份,表示这样的一份或者几份的数叫做分数。分母:表示把单位“1”平均分成多少份;分子:表示有这样的多少份。把单位“1”平均分成若干份,表示其中的一份的数,叫做分数单位。 2分类  真分数:分子比分母小的分数叫做真分数。真分数小于1。 假分数:分子比分母大或者分子和分母相等的分数,叫做假分数。假分数大于或等于1。 带分数:假分数可以写成整数与真分数合成的数,通常叫做带分数。 3约分和通分  把一个分数化成同它相等但是分子、分母都比较小的分数,叫做约分。 分子分母是互质数的分数,叫做最简分数。 把异分母分数分别化成和原来分数相等的同分母分数,叫做通分。  百分数表示一个数是另一个数的百分之几的数【精品文档】\n【精品文档】叫做百分数,也叫做百分率或百分比。百分数通常用"%"来表示。百分号是表示百分数的符号。 (二)数的改写 1.准确数:在实际生活中,为了计数的简便,可以把一个较大的数改写成以万或亿为单位的数。改写后的数是原数的准确数。例如把1254300000改写成以万做单位的数是125430万;改写成以亿做单位的数12.543亿。 2.近似数:根据实际需要,我们还可以把一个较大的数,省略某一位后面的尾数,用一个近似数来表示。例如:1302490015省略亿后面的尾数是13亿。 3.四舍五入法:要省略的尾数的最高位上的数是4或者比4小,就把尾数去掉;如果尾数的最高位上的数是5或者比5大,就把尾数舍去,并向它的前一位进1。例如:省略【精品文档】\n【精品文档】345900万后面的尾数约是35万。省略4725097420亿后面的尾数约是47亿。 (三)数的互化   1.小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。          2.分数化成小数:用分母去除分子。能除尽的就化成有限小数,有的不能除尽,不能化成有限小数的,一般保留三位小数。         3.一个最简分数,如果分母中除了2和5以外,不含有其他的质因数,这个分数就能化成有限小数;如果分母中含有2和5以外的质因数,这个分数就不能化成有限小数。  4.小数化成百分数:只要把小数点向右移动两位,同时在后面添上百分号。【精品文档】\n【精品文档】5.百分数化成小数:把百分数化成小数,只要把百分号去掉,同时把小数点向左移动两位。  6.分数化成百分数:通常先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。7.百分数化成小数:先把百分数改写成分数,能约分的要约成最简分数。 (四)数的整除 1.把一个合数分解质因数,通常用短除法。2.求几个数的最大公约数的方法是:先用这几个数的公约数连续去除,一直除到所得的商只有公约数1为止,然后把所有的除数连乘求积,这个积就是这几个数的的最大公约数。 【精品文档】\n【精品文档】3.求几个数的最小公倍数的方法是:先用这几个数(或其中的部分数)的公约数去除,一直除到互质(或两两互质)为止,然后把所有的除数和商连乘求积,这个积就是这几个数的最小公倍数。 (五)约分和通分 约分的方法:用分子和分母的公约数(1除外)去除分子、分母;通常要除到得出最简分数为止。     通分的方法:先求出原来的几个分数分母的最小公倍数,然后把各分数化成用这个最小公倍数作分母的分数。 三、性质和规律(一)商不变的规律 :在除法里,被除数和除数同时扩大或者同时缩小相同的倍,商不变。 (二)小数的性质:在小数的末尾添上零或者去掉零小数的大小不变。 【精品文档】\n【精品文档】(三)小数点位置的移动引起小数大小的变化1.小数点向右移动一位,原来的数就扩大10倍;小数点向右移动两位,原来的数就扩大100倍;小数点向右移动三位,原来的数就扩大1000倍……          2. 小数点向左移动一位,原来的数就缩小10倍;小数点向左移动两位,原来的数就缩小100倍;小数点向左移动三位,原来的数就缩小1000倍……          3.小数点向左移或者向右移位数不够时,要用“0"补足位。  (四)  分数的基本性质:分数的分子和分母都乘以或者除以相同的数(零除外),分数的大小不变。 (五)分数与除法的关系        1.被除数÷除数=  被除数/除数          2.【精品文档】\n【精品文档】因为零不能作除数,所以分数的分母不能为零。          3.被除数相当于分子,除数相当于分母。   四  运算的意义 (一)整数四则运算        1.整数加法:把两个数合并成一个数的运算叫做加法。          -在加法里,相加的数叫做加数,加得的数叫做和。加数是部分数,和是总数。          -加数+加数=和   一个加数=和-另一个加数         2.整数减法:已知两个加数的和与其中的一个加数,求另一个加数的运算叫做减法。          -在减法里,已知的和叫做被减数,已知的加数叫做减数,未知的加数叫做差。被减数是总数,减数和差分别是部分数。   【精品文档】\n【精品文档】       -加法和减法互为逆运算。         3.整数乘法:求几个相同加数的和的简便运算叫做乘法。          -在乘法里,相同的加数和相同加数的个数都叫做因数。相同加数的和叫做积。          - 在乘法里,0和任何数相乘都得0.   1和任何数相乘都的任何数。          -一个因数×一个因数=积      一个因数=积÷另一个因数         4.整数除法:已知两个因数的积与其中一个因数,求另一个因数的运算叫做除法。         -在除法里,已知的积叫做被除数,已知的一个因数叫做除数,所求的因数叫做商。          -乘法和除法互为逆运算。          -在除法里,0不能做除数。因为0和任何数相乘都得0,所以任何一个数除以0,均得不到一个确定的商。   【精品文档】\n【精品文档】       -被除数÷除数=商  除数=被除数÷商  被除数=商×除数      (二)小数四则运算        1.小数加法:小数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。         2.小数减法:小数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算.        3. 小数乘法:小数乘整数的意义和整数乘法的意义相同,就是求几个相同加数和的简便运算;一个数乘纯小数的意义是求这个数的十分之几、百分之几、千分之几……是多少。       4.小数除法:小数除法的意义与整数除法的意义相同,就是已知两个因数的积与其中一个因数,求另一个因数的运算。        5.乘方【精品文档】\n【精品文档】求几个相同因数的积的运算叫做乘方。例如3×3=32     (三)分数四则运算        1.分数加法:分数加法的意义与整数加法的意义相同。是把两个数合并成一个数的运算。        2.分数减法:分数减法的意义与整数减法的意义相同。已知两个加数的和与其中的一个加数,求另一个加数的运算。        3.分数乘法:分数乘法的意义与整数乘法的意义相同,就是求几个相同加数和的简便运算。         4.乘积是1的两个数叫做互为倒数。        5.分数除法:分数除法的意义与整数除法的意义相同。就是已知两个因数的积与其中一个因数,求另一个因数的运算。     (四)运算定律        1.【精品文档】\n【精品文档】加法交换律:两个数相加,交换加数的位置,它们的和不变,即a+b=b+a。        2. 加法结合律:三个数相加,先把前两个数相加,再加上第三个数;或者先把后两个数相加,再和第一个数相加它们的和不变,即(a+b)+c=a+(b+c) 。        3.乘法交换律:两个数相乘,交换因数的位置它们的积不变,即a×b=b×a。        4. 乘法结合律:三个数相乘,先把前两个数相乘,再乘以第三个数;或者先把后两个数相乘,再和第一个数相乘,它们的积不变,即(a×b)×c=a×(b×c)       5.乘法分配律:两个数的和与一个数相乘,可以把两个加数分别与这个数相乘再把两个积相加,即(a+b)×c=a×c+b×c。        6.【精品文档】\n【精品文档】减法的性质:从一个数里连续减去几个数,可以从这个数里减去所有减数的和,差不变,即a-b-c=a-(b+c)。                    (五)运算法则        1.整数加法计算法则:相同数位对齐,从低位加起,哪一位上的数相加满十,就向前一位进一。        2.整数减法计算法则:相同数位对齐,从低位加起,哪一位上的数不够减,就从它的前一位退一作十,和本位上的数合并在一起,再减。         3. 整数乘法计算法则:先用一个因数每一位上的数分别去乘另一个因数各个数位上的数,用因数哪一位上的数去乘,乘得的数的末尾就对齐哪一位,然后把各次乘得的数加起来。       4.整数除法计算法则:先从被除数的高位除起,除数是几位数,就看被除数的前几位; 【精品文档】\n【精品文档】如果不够除,就多看一位,除到被除数的哪一位,商就写在哪一位的上面。如果哪一位上不够商1,要补“0”占位。每次除得的余数要小于除数。        5. 小数乘法法则:先按照整数乘法的计算法则算出积,再看因数中共有几位小数,就从积的右边起数出几位,点上小数点;如果位数不够,就用“0”补足。      6. 除数是整数的小数除法计算法则:先按照整数除法的法则去除,商的小数点要和被除数的小数点对齐;如果除到被除数的末尾仍有余数,就在余数后面添“0”,再继续除。       7. 除数是小数的除法计算法则:先移动除数的小数点,使它变成整数,除数的小数点也向右移动几位(位数不够的补“0”),然后按照除数是整数的除法法则进行计算。      8.同分母分数加减法计算方法:同分母分数相加减,只把分子相加减,分母不变。       9.【精品文档】\n【精品文档】异分母分数加减法计算方法:先通分,然后按照同分母分数加减法的的法则进行计算。      10.带分数加减法的计算方法:整数部分和分数部分分别相加减,再把所得的数合并起来。      11. 分数乘法的计算法则:分数乘整数,用分数的分子和整数相乘的积作分子,分母不变;分数乘分数,用分子相乘的积作分子,分母相乘的积作分母。      12.分数除法的计算法则:甲数除以乙数(0除外),等于甲数乘乙数的倒数。     (六)运算顺序      1.小数四则运算的运算顺序和整数四则运算顺序相同。      2.分数四则运算的运算顺序和整数四则运算顺序相同。   【精品文档】\n【精品文档】   3.没有括号的混合运算:同级运算从左往右依次运算;两级运算先算乘、除法,后算加减法。      4.有括号的混合运算:先算小括号里面的,再算中括号里面的,最后算括号外面的。      5.第一级运算:加法和减法叫做第一级运算。       6.第二级运算:乘法和除法叫做第二级运算。五 应用 总价=单价×数量  路程=速度×时间  工作总量=工作时间×工效  总产量=单产量×数量  (1)平均数问题: 总数量除以总份数。 (2)归一问题:       一次归一问题,用一步运算就能求出“单一量”的归一问题。又称“单归一。” 【精品文档】\n【精品文档】两次归一问题,用两步运算就能求出“单一量”的归一问题。又称“双归一。” 正归一问题:用等分除法求出“单一量”之后,再用乘法计算结果的归一问题。 反归一问题:用等分除法求出“单一量”之后,再用除法计算结果的归一问题。 解题关键:从已知的一组对应量中用等分除法求出一份的数量(单一量),然后以它为标准,根据题目的要求算出结果。数量关系式:单一量×份数=总数量(正归一)   总数量÷单一量=份数(反归一) 例一个织布工人,在七月份织布4774米,照这样计算,织布6930米,需要多少天? 分析:必须先求出平均每天织布多少米,就是单一量。6930÷(4774÷31)=45(天)(3)归总问题:例修一条水渠,原计划每天修800米,6【精品文档】\n【精品文档】天修完。实际4天修完,每天修了多少米?  分析:因为要求出每天修的长度,就必须先求出水渠的长度。所以也把这类应用题叫做“归总问题”不同之处是“归一”先求出单一量,再求总量,归总问题是先求出总量,再求单一量。800×6÷4=1200(米) (4)和差问题:已知大小两个数的和,以及他们的差,求这两个数各是多少的应用题叫做和差问题。               -解题关键:是把大小两个数的和转化成两个大数的和(或两个小数的和),然后再求另一个数。               -解题规律:(和+差)÷2=大数   大数-差=小数               (和-差)÷2=小数       和-小数=大数               例某加工厂甲班和乙班共有工人【精品文档】\n【精品文档】94人,因工作需要临时从乙班调46人到甲班工作,这时乙班比甲班人数少12             人,求原来甲班和乙班各有多少人?               分析:从乙班调46人到甲班,对于总数没有变化,现在把乙数转化成2个乙班,即94-12,由此得到现在的乙班是(94             -12)÷2=41(人),乙班在调出46人之前应该为41+46=87(人),甲班为94-87=7(人)              5)和倍问题:已知两个数的和及它们之间的倍数关系,求两个数各是多少的应用题,叫做和倍问题。               -             解题关键:找准标准数(即1倍数)一般说来,题中说是“谁”【精品文档】\n【精品文档】的几倍,把谁就确定为标准数。求出倍数和之后,再求出标准的数量是多少。根据另一个数(也可能是几个数)与标准数的倍数关系,再去求另一个数(或几个数)的数量。                           -解题规律:和÷倍数和=标准数   标准数×倍数=另一个数               例:汽车运输场有大小货车115辆,大货车比小货车的5倍多7辆,运输场有大货车和小汽车各有多少辆?               分析:大货车比小货车的5倍还多7辆,这7辆也在总数115辆内,为了使总数与(5+1)倍对应,总车辆数应(115-7             )辆。               列式为(115-7)÷(5+1)=18(辆),18×5+7=97(辆)           (6)差倍问题:已知两个数的差,及两个数的倍数关系,求两个数各是多少的应用题。   【精品文档】\n【精品文档】            -解题规律:两个数的差÷(倍数-1)=标准数  标准数×倍数=另一个数。               例甲乙两根绳子,甲绳长63米,乙绳长29米,两根绳剪去同样的长度,结果甲所剩的长度是乙绳长的3             倍,甲乙两绳所剩长度各多少米?各减去多少米?               分析:两根绳子剪去相同的一段,长度差没变,甲绳所剩的长度是乙绳的3倍,实比乙绳多(3-1)倍,以乙绳的长度为标准数。列式(             63-29)÷(3-1)=17(米)…乙绳剩下的长度,17×3=51(米)…甲绳剩下的长度,29-17=12             (米)…剪去的长度。    (7)行程问题:解题关键及规律: 同时同地相背而行:路程=速度和×时间。 【精品文档】\n【精品文档】同时相向而行:相遇路程=速度和×时间       同时同向而行(速度慢的在前,快的在后):追及时间=路程速度差。       同时同地同向而行(速度慢的在后,快的在前):路程=速度差×时间。例甲在乙的后面28千米,两人同时同向而行,甲每小时行16千米,乙每小时行9千米,甲几小时追上乙? 分析:甲每小时比乙多行(16-9)千米,也就是甲每小时可以追近乙(16-9)千米,这是速度差。      已知甲在乙的后面28千米(追击路程),28千米里包含着几个(16-9)千米,也就是追击所需要的时间。列式28÷(16-9)=4(小时)(10)植树问题:【精品文档】\n【精品文档】解题关键:解答植树问题首先要判断地形,分清是否封闭图形,从而确定是沿线段植树还是沿周长植树,然后按基本公式进行计算。 解题规律:沿线段植树 棵树=段数+1   棵树=总路程÷株距+1株距=总路程÷(棵树-1)     总路程=株距×(棵树-1) 沿周长植树 棵树=总路程÷株距 株距=总路程÷棵树 总路程=株距×棵树  (二)  分数乘法应用题: 是指已知一个数,求它的几分之几是多少的应用题。 特征:已知单位“1”的量和分率,求与分率所对应的实际数量。 3分数除法应用题:  甲是乙的几分之几(百分之几):甲是比较量,乙是标准量,用甲除以乙。 甲比乙多(或少)几分之几(百分之几):甲减乙比乙多(或少几分之几)或(百分之几)。关系式(甲数减乙数)/乙数或(甲数减乙数)/甲数。【精品文档】\n【精品文档】已知一个数的几分之几(或百分之几),求这个数。特征:已知一个实际数量和它相对应的分率,求单位“1”的量。 4 出勤率 发芽率=发芽种子数/试验种子数×100%    小麦的出粉率=面粉的重量/小麦的重量×100%产品的合格率=合格的产品数/产品总数×100%    职工的出勤率=实际出勤人数/应出勤人数×100%5 工程问题: 解题关键:把工作总量看作单位“1”,工作效率就是工作时间的倒数,然后根据题目的具体情况,灵活运用公式。    数量关系式: 工作总量=工作效率×工作时间 工作效率=工作总量÷工作时间 工作时间=工作总量÷工作效率    工作总量÷工作效率和=合作时间 【精品文档】\n【精品文档】缴纳的税款叫应纳税款。 应纳税额与各种收入的(销售额、营业额、应纳税所得额…)的比率叫做税率。   存入银行的钱叫做本金。 取款时银行多支付的钱叫做利息。 利息与本金的比值叫做利率。  利息=本金×利率×时间 -第二章度量衡  长度  1毫米=1000微米 *1厘米=10毫米 *1分米=10厘米 *1米=1000毫米 *1千米=1000米 面积,就是物体所占平面的大小。对立体物体的表面的多少的测量一般称表面积。   1平方厘米=100平方毫米  1平方分米=100平方厘米   1平方米=100平方分米 1公倾=10000平方米   1平方公里=100公顷 【精品文档】\n【精品文档】体积,就是物体所占空间的大小。 容积,箱子、油桶、仓库等所能容纳物体的体积,通常叫做它们的容积。  1体积单位 *1立方米=1000立方分米  *1立方分米=1000立方厘米 2容积单位 *1升=1000毫升  *1升=1立方米 *1毫升=1立方厘米 质量,就是表示表示物体有多重。 一吨=1000千克  *1千克=1000克 1年=365天  平年 *一年=366天 闰年 *一、三、五、七、八、十、十二是大月 大月有31天  *四、六、九、十一是小月小月  小月有30天   *平年2月有28天 闰年2月有29天 *1天=24小时 *1小时=60分 *一分=60秒           1元=10角 *1角=10分 第三章代数初步知识【精品文档】\n【精品文档】(2)运算定律和性质   加法交换律:a+b=b+a     加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba    乘法结合律:(ab)c=a(bc)  乘法分配律:(a+b)c=ac+bc减法的性质:a-(b+c)=a-b-c二、简易方程 1方程:含有未知数的等式叫做方程。  注意方程是等式,又含有未知数,两者缺一不可。  2方程的解:使方程左右两边相等的未知数的值,叫做方程的解。 三、解方程 :求方程的解的过程叫做解方程。 五 比和比例   (1)比: 两个数相除又叫做两个数的比。 “:”是比号,读作“比”【精品文档】\n【精品文档】。比号前面的数叫做比的前项,比号后面的数叫做比的后项。比的前项除以后项所得的商,叫做比值。 同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。  比的后项不能是零。 根据分数与除法的关系,可知比的前项相当于分子,后项相当于分母,比值相当于分数值。 (2)比的性质 比的前项和后项同时乘上或者除以相同的数(0除外),比值不变,这叫做比的基本性质。 根据比的基本性质可以把比化成最简单的整数比。它的结果必须是一个最简比,即前、后项是互质的数。 图上距离:实际距离=比例尺 要求会求比例尺;已知图上距离和比例尺求实际距离;已知实际距离和比例尺求图上距离。 【精品文档】\n【精品文档】线段比例尺:在图上附有一条注有数目的线段,用来表示和地面上相对应的实际距离。 (5)把一个数量按照一定的比来进行分配。这种分配的方法通常叫做按比例分配。 方法:首先求出各部分占总量的几分之几,然后求出总数的几分之几是多少。 (1)比例 :表示两个比相等的式子叫做比例。 组成比例的四个数,叫做比例的项。 两端的两项叫做外项,中间的两项叫做内项。 (2)比例的性质 在比例里,两个外项的积等于两个两个内向的积。这叫做比例的基本性质。 (3)解比例 :根据比例的基本性质,如果已知比例中的任何三项,就可以求出这个数比例中的另外一个未知项。求比例中的未知项,叫做解比例。 【精品文档】\n【精品文档】3正比例和反比例  :两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,他们的关系叫做正比例关系。  用字母表示y/x=k(一定) (2)成反比例的量 两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,他们的关系叫做反比例关系。 用字母表示x×y=k(一定)第四章几何的初步知识 直线 直线没有端点;长度无限;过一点可以画无数条,过两点只能画一条直线。  射线 射线只有一个端点;长度无限。  线段 线段有两个端点,它是直线的一部分;长度有限;两点的连线中,线段为最短。 平行线 【精品文档】\n【精品文档】在同一平面内,不相交的两条直线叫做平行线。 两条平行线之间的垂线长度都相等。 垂线  两条直线相交成直角时,这两条直线叫做互相垂直,其中一条直线叫做另一条直线的垂线,相交的点叫做垂足。 从直线外一点到这条直线所画的垂线的长叫做这点到直线的距离。  (1)从一点引出两条射线,所组成的图形叫做角。这个点叫做角的顶点,这两条射线叫做角的边。 (2)角的分类 锐角:小于90°的角叫做锐角。 直角:等于90°的角叫做直角。 钝角:大于90°而小于180°的角叫做钝角。 平角:角的两边成一条直线,这时所组成的角叫做平角。平角180°。 【精品文档】\n【精品文档】 周角:角的一边旋转一周,与另一边重合。周角是360°。 二平面图形 1长方形 特征 对边相等,4个角都是直角的四边形。有两条对称轴。  c=2(a+b)  s=ab2正方形特征: 四条边都相等,四个角都是直角的四边形。有4条对称轴。 c=4a s=a²3三角形特征 由三条线段围成的图形。内角和是180度。三角形具有稳定性。三角形有三条高。 s=ah/24分类    按角分 锐角三角形:三个角都是锐角。 直角三角形:有一个角是直角。等腰三角形的两个锐角各为45度,它有一条对称轴。 钝角三角形:有一个角是钝角。 按边分 不等边三角形:三条边长度不相等。 【精品文档】\n【精品文档】等腰三角形:有两条边长度相等;两个底角相等;有一条对称轴。 等边三角形:三条边长度都相等;三个内角都是60度;有三条对称轴。 平行四边形 : 两组对边分别平行的四边形。 相对的边平行且相等。对角相等,相邻的两个角的度数之和为180度。平行四边形容易变形。  计算公式 s=ah5梯形 : 只有一组对边平行的四边形。 s=(a+b)h/26圆 平面上的一种曲线图形。 圆中心的一点叫做圆心。一般用字母o表示。 半径:连接圆心和圆上任意一点的线段叫做半径。一般用r表示。 在同一个圆里,有无数条半径,每条半径的长度都相等。 通过圆心并且两端都在圆上的线段叫做直径。一般用d表示。 【精品文档】\n【精品文档】同一个圆里有无数条直径,所有的直径都相等。 同一个圆里,直径等于两个半径的长度,即d=2r。 圆的大小由半径决定。圆有无数条对称轴。  围成圆的曲线的长叫做圆的周长。 把圆的周长和直径的比值叫做圆周率。用字母∏表示。   圆所占平面的大小叫做圆的面积。        环形 s=∏(R²-r²) 三立体图形(一)长方体 特征 六个面都是长方形(有时有两个相对的面是正方形)。 相对的面面积相等,12条棱相对的4条棱长度相等。 有8个顶点。 相交于一个顶点的三条棱的长度分别叫做长、宽、高。两个面相交的边叫做棱。 三条棱相交的点叫做顶点。 把长方体放在桌面上,最多只能看到三个面。 【精品文档】\n【精品文档】长方体或者正方体6个面的总面积,叫做它的表面积。  s=2(ab+ah+bh) V=sh V=abh (二)正方体特征 六个面都是正方形 六个面的面积相等 12条棱,棱长都相等 有8个顶点 正方体可以看作特殊的长方体 S表=6a²  v=a³(三)圆柱 圆柱的上下两个面叫做底面。 圆柱有一个曲面叫做侧面。侧面展开是长方形或正方形。 圆柱两个底面之间的距离叫做高。    s侧=ch  s表=s侧+s底×2  v=sh/3(四)圆锥 圆锥的底面是个圆,圆锥的侧面是个曲面。 从圆锥的顶点到底面圆心的距离是圆锥的高。 【精品文档】\n【精品文档】 把圆锥的侧面展开得到一个扇形。 v=sh1/3-第五章 1条形统计图 优点:很容易看出各种数量的多少。 注意:画条形统计图时,直条的宽窄必须相同。 2折线统计图  优点:不但可以表示数量的多少,而且能够清楚地表示出数量增减变化的情况。 【精品文档】

相关文档