- 21.74 KB
- 2022-08-02 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立箐优初中数学圆教案 篇一:初中数学_圆教案 第二十四章圆 单元要点分析教学内容 1.本单元数学的主要内容. (1)圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角. (2)与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,?圆和圆的位置关系. (3)正多边形和圆. (4)弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用. 学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了这些直线型图形的有关性质的基础上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的基础性工程.教学目标 1.知识与技能随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 (1)了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、?弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理. (2)探索并理解点和圆、直线与圆以及圆与圆的位置关系:了解切线的概念,?探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线. (3)进一步认识和理解正多边形和(来自:小龙文档网:箐优初中数学圆教案)圆的关系和正多边的有关计算. (4)熟练掌握弧长和扇形面积公式及其它们的应用;?理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法 (1)积极引导学生从事观察、测量、平移、旋转、推理证明等活动.?了解概念,理解等量关系,掌握定理及公式. (2)在教学过程中,鼓励学生动手、动口、动脑,并进行同伴之间的交流. (3)在探索圆周角和圆心角之间的关系的过程中,?让学生形成分类讨论的数学思想和归纳的数学思想. (4)通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,?使学生明确图形在运动变化中的特点和规律,进一步发展学生的推理能力.随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 (5)探索弧长、扇形的面积、?圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义. 3.情感、态度与价值观 经历探索圆及其相关结论的过程,发展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点 1.平分弦(不是直径)的直径垂直于弦,?并且平分弦所对的两条弧及其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,?所对的弦也相等及其运用. 3.在同圆或等圆中,同弧或等弧所对的圆周角相等,?都等于这条弧所对的圆心角的 一半及其运用. 4.半圆(或直径)所对的圆周角是直角,90?°的圆周角所对的弦是直径及其运用.5.不在同一直线上的三个点确定一个圆. 6.直线L和⊙O相交?dr及其运用. 7.圆的切线垂直于过切点的半径及其运用. 8.?经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题. 9.从圆外一点可以引圆的两条切线,它们的切线长相等,?这一点和圆心的连线平分两条切线的夹角及其运用.随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 10.两圆的位置关系:d与r1和r2之间的关系:外离?d>r1+r2;外切?d=r1+r2;相交?│r2-r1│ 11.正多边形和圆中的半径R、边心距r、中心角θ之间的等量关系并应用这个等量关系解决具体题目. n?Rn?R2 12.n°的圆心角所对的弧长为L=,n°的圆心角的扇形面积是S扇形=及其 运用这两个公式进行计算. 13.圆锥的侧面积和全面积的计算.教学难点 1.垂径定理的探索与推导及利用它解决一些实际问题. 2.弧、弦、圆心有的之间互推的有关定理的探索与推导,?并运用它解决一些实际问题. 3.有关圆周角的定理的探索及推导及其它的运用.4.点与圆的位置关系的应用.5.三点确定一个圆的探索及应用. 6.直线和圆的位置关系的判定及其应用.7.切线的判定定理与性质定理的运用.8.切线长定理的探索与运用. 9.圆和圆的位置关系的判定及其运用. 10.正多边形和圆中的半径R、边心距r、中心角θ的关系的应用. n?Rn?R2随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 11.n的圆心角所对的弧长L=及S扇形=的公式的应用. 12.圆锥侧面展开图的理解. 教学关键 1.积极引导学生通过观察、测量、折叠、平移、旋转等数学活动探索定理、?性质、“三个”位置关系并推理证明等活动. 2.关注学生思考方式的多样化,注重学生计算能力的培养与提高. 3.在观察、操作和推导活动中,使学生有意识地反思其中的数学思想方法,?发展学生有条理的思考能力及语言表达能力.单元课时划分 本单元教学时间约需13课时,具体分配如下:24.1圆3课时 24.2与圆有关的位置关系4课时24.3正多边形和圆1课时24.4弧长和扇形面积2课时教学活动、习题课、小结3课时 篇二:初中数学教案—圆刘雪香 教师:刘老师学生:夏锦州授课时间:XX年4月___日10:30_——12:30段教学内容: 一、圆的概念随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 集合形式的概念:1、圆可以看作是到定点的距离等于定长的点的集合;2、圆的外部:可以看作是到定点的距离大于定长的点的集合;3、圆的内部:可以看作是到定点的距离小于定长的点的集合 轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;(补充)2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线(也叫中垂线);3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线;5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到两条直线距离都相等的一条直线。 例1.下面四个命题中正确的一个是() A.平分一条直径的弦必垂直于这条直径B.平分一条弧的直线垂直于这条弧所对的弦 C.弦的垂线必过这条弦所在圆的圆心D.在一个圆内平分一条弧和它所对弦的直线必过这个圆的圆心 2.下列命题中,正确的是(). A.过弦的中点的直线平分弦所对的弧B.过弦的中点的直线必过圆心C.弦所对的两条弧的中点连线垂直平分弦,且过圆心D.弦的垂线平分弦所对的弧随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 二、点与圆的位置关系 1、点在圆内?d2、点在圆上?d3、点在圆外?d三、直线与圆的位置关系 1、直线与圆相离?d2、直线与圆相切 ?d3、直线与圆相交 ?d ?r?点C在圆内;?r?点B在圆上;?r?点A在圆外; ?r?无交点;?r?有一个交点;?r?有两个交点; A 四、圆与圆的位置关系 外离(图1)?无交点?d ?R?r; 外切(图2)?有一个交点?d?R?r; 相交(图3)?有两个交点?R?r?d?R?r;内切(图4)?有一个交点?d?R ?r;内含(图5)?无交点?d?R?r; -1-学理科到张扬数理化英就到张扬教育热线:0743— 图1 图4 图5随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 图2 五、垂径定理 垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; D B (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即:① AB是直径②AB?CD③CE?DE④弧BC?弧BD⑤弧AC?弧AD AB∥CD∴弧AC?弧BD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。即:在⊙O中,∵ 例2、垂径定理 1、在直径为52cm的圆柱形油槽内装入一些油后,截面如图所示,如果油的最大深度为16cm,那么油面宽度AB是________cm.随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 2、在直径为52cm的圆柱形油槽内装入一些油后,,如果油面宽度是48cm,那么油的最大深度为________cm. 例3、度数问题1、已知:在⊙O中,弦的半径. AB?12cm,O点到AB的距离等于AB的一半,求:?AOB的度数和圆 -2-学理科到张扬 数理化英就到张扬教育热线:0743— 2、已知:⊙O的半径OA 例4、相交问题 如图,已知⊙O的直径AB和弦CD相交于点E,AE=6cm,EB=2cm,∠BED=30°,求CD的长. 例5、平行问题 在直径为50cm的⊙O中,弦AB=40cm,弦CD=48cm,且AB∥CD,求:AB与CD之间的距离. 六、圆心角定理 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,则可以推出其它的3个结论,即:① ?1,弦AB、AC的长分别是2、3.求?BAC 的度数。 B?AOB??DOE;②AB?DE;③OC?OF 七、圆周角定理随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 ;④弧BA?弧BD 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即:∵?AOB和?ACB是弧 AB所对的圆心角和圆周角∴?AOB?2?ACB B B A B O A 2、圆周角定理的推论: -3-学理科到张扬数理化英就到张扬教育热线:0743— 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧;即:在⊙O中,∵?C、?D都是所对的圆周角∴?C ??D 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在⊙O中,∵ AB是直径∴?C?90?或∵?C?90?∴AB是直径随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在△ ABC中,∵OC?OA?OB∴△ABC是直角三角形或?C?90? 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 例1、如图1,AB是半⊙O的直径,过A、B两点作半⊙O的弦,当两弦交点恰好落在半⊙O上C点时,则 有AC·AC+BC·BC=AB. (1)如图2,若两弦交于点P在半⊙O内,则AP·AC+BP·BD=AB是否成立?请说明理由.(2)如图3,若两弦AC、BD的延长线交于P点,则AB=结论的正确性. 2 2 2 .参照(1)填写相应结论,并证明你填写 -4-学理科到张扬数理化英就到张扬教育热线:0743— 篇三:初中数学圆专题复习教案 圆专题复习 学生姓名:指导教师: 知识点归纳 一、圆的基本性质 1、圆的有关概念随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 (1)圆(2)圆心角(3)圆周角(4)弧(5)弦2、圆的有关性质(1)圆是轴对称图形,其对称轴是任意一条过圆心的直线;圆是中心对称图形,对称中心为圆心. (2)垂直于弦的直径平分这条弦,并且平分弦所对的弧. 推论:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧. (3)弧、弦、圆心角的关系:在同圆或等圆中,如果两个圆心角,两条弧,两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等. 推论:在同圆或等圆中,同弧或等弧所对的圆周角相等;直径所对的圆周角是直角;90度的圆周角所对的弦是直径3.三角形的内心和外心: (1)确定圆的条件:不在同一直线上的三个点确定一个圆. (2)三角形的外心:三角形外接圆的圆心,简称外心.与外心关系密切的有圆心角定理和圆周角定理 (3)三角形的内心:在三角形中,三个角的角平分线的交点是这个三角形内切圆的圆心 4.圆心角的度数等于它所对弧的度数.圆周角的度数等于它所对弧的度数一半.随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立同圆或等圆中,同弧或等弧所对的圆周角等于它所对的圆心角的一半. 二、直线与圆、圆与圆的位置关系 1.直线与圆的位置关系 (1)相离(2)相切(3)相交2.切线的定义和性质: 若直线只与圆交与一点,则这条直线被称为圆的切线.切线与圆的半径所在直线垂直.从圆外一点引同一个圆的两条切线,切点与圆外一点之间的的距离相等。3. 三角形与圆的特殊位置关系 4.圆与圆的位置关系:(两圆圆心距为d,半径分别为r1,r2) 三、圆的有关计算 1、圆周的公式 2、n°的圆心角所对的弧长公式3、圆心角为n°的扇形面积公式 例题分析 例题1.如图,BC是以线段AB为直径的⊙O的切线,AC交⊙O于点D,过点D作弦DE?AB,垂足为点F,连接BD、BE..(1)仔细观察图形并写出四个不同的正确结论:①_________,②________,③________,④________ CD (不添加其它字母和辅助线)(2)?A=30°,随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起\n自从人类进入商品经济社会以来,贸易即已成为人们日常活动的主要部分,并成为一国经济增长的主动力。国际分工的深化、大量国际统一标准规则的建立 求⊙O的半径r. (2)?A=30°,CD ⊙O的半径例题1图 例2.如图,四边形ABCD内接于⊙A,AC为⊙O的直径,弦DB⊥AC,垂足为M,过点D作⊙O的切线交BA的延长线于点E,若AC=10,tan∠DAE=长. 4 ,求DB的3 例3.如图,线段AB与⊙O相切于点C,连结OA、OB,OB交⊙O于点D,已知OA=OB=6㎝,AB=63㎝. 求:(1)⊙O的半径;(2)图中阴影部分的面积. O A C B 随着信息化和全球化的发展,国家及地区之间的贸易也已成为拉动一国经济的三驾马车之一,甚至是三驾马车之首,奥巴马政府成立之日起