• 455.38 KB
  • 2022-08-02 发布

高中数学数列专题大题训练-高中课件精选

  • 23页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高考高中数学数列专题大题组卷 一.选择题(共9小题)1.等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(  )A.130B.170C.210D.2602.已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=(  )A.B.7C.6D.3.数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=(  )A.3×44B.3×44+1C.44D.44+14.已知数列{an}满足3an+1+an=0,a2=﹣,则{an}的前10项和等于(  )A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)5.等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=(  )A.B.C.D.6.已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=(  )A.138B.135C.95D.237.设等差数列{an}的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=(  )A.3B.4C.5D.68.等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=(  )A.n(n+1)B.n(n﹣1)C.D.9.设{an}是等差数列,下列结论中正确的是(  )A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0 二.解答题(共14小题)10.设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an﹣a1,且a1,a2+高中教育\n高考1,a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记数列{}的前n项和为Tn,求使得|Tn﹣1|成立的n的最小值.11.设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.12.已知数列{an}满足a1=1,an+1=3an+1.(Ⅰ)证明{an+}是等比数列,并求{an}的通项公式;(Ⅱ)证明:++…+<.13.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.14.等差数列{an}中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=,求数列{bn}的前n项和Sn.15.已知等比数列{an}中,a1=,公比q=.(Ⅰ)Sn为{an}的前n项和,证明:Sn=(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.16.已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.17.已知数列{an}是首项为正数的等差数列,数列{}的前n项和为高中教育\n高考.(1)求数列{an}的通项公式;(2)设bn=(an+1)•2,求数列{bn}的前n项和Tn.18.已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+…+bn=bn+1﹣1(n∈N*)(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.19.已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.20.设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.21.设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由(Ⅰ)设bn=Sn﹣3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.22.已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=(﹣1)n﹣1,求数列{bn}的前n项和Tn.23.数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设bn=3n•,求数列{bn}的前n项和Sn. 高中教育\n高考高中数学数列专题大题组卷参考答案与试题解析 一.选择题(共9小题)1.(1996•全国)等差数列{an}的前m项和为30,前2m项和为100,则它的前3m项和为(  )A.130B.170C.210D.260【分析】利用等差数列的前n项和公式,结合已知条件列出关于a1,d的方程组,用m表示出a1、d,进而求出s3m;或利用等差数列的性质,sm,s2m﹣sm,s3m﹣s2m成等差数列进行求解.【解答】解:解法1:设等差数列{an}的首项为a1,公差为d,由题意得方程组,解得d=,a1=,∴s3m=3ma1+d=3m+=210.故选C.解法2:∵设{an}为等差数列,∴sm,s2m﹣sm,s3m﹣s2m成等差数列,即30,70,s3m﹣100成等差数列,∴30+s3m﹣100=70×2,解得s3m=210.故选C.【点评】解法1为基本量法,思路简单,但计算复杂;解法2使用了等差数列的一个重要性质,即等差数列的前n项和为sn,则sn,s2n﹣sn,s3n﹣s2n高中教育\n高考,…成等差数列. 2.(2010•大纲版Ⅰ)已知各项均为正数的等比数列{an},a1a2a3=5,a7a8a9=10,则a4a5a6=(  )A.B.7C.6D.【分析】由数列{an}是等比数列,则有a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10.【解答】解:a1a2a3=5⇒a23=5;a7a8a9=10⇒a83=10,a52=a2a8,∴,∴,故选A.【点评】本小题主要考查等比数列的性质、指数幂的运算、根式与指数式的互化等知识,着重考查了转化与化归的数学思想. 3.(2011•四川)数列{an}的前n项和为Sn,若a1=1,an+1=3Sn(n≥1),则a6=(  )A.3×44B.3×44+1C.44D.44+1【分析】根据已知的an+1=3Sn,当n大于等于2时得到an=3Sn﹣1,两者相减,根据Sn﹣Sn﹣1=an,得到数列的第n+1项等于第n项的4倍(n大于等于2),所以得到此数列除去第1项,从第2项开始,为首项是第2项,公比为4的等比数列,由a1=1,an+1=3Sn,令n=1,即可求出第2项的值,写出2项以后各项的通项公式,把n=6代入通项公式即可求出第6项的值.【解答】解:由an+1=3Sn,得到an=3Sn﹣1(n≥2),两式相减得:an+1﹣an=3(Sn﹣Sn﹣1)=3an,则an+1=4an(n≥2),又a1=1,a2=3S1=3a1=3,得到此数列除去第一项后,为首项是3,公比为4的等比数列,所以an=a2qn﹣2=3×4n﹣2(n≥2)高中教育\n高考则a6=3×44.故选A【点评】此题考查学生掌握等比数列的确定方法,会根据首项和公比写出等比数列的通项公式,是一道基础题. 4.(2013•大纲版)已知数列{an}满足3an+1+an=0,a2=﹣,则{an}的前10项和等于(  )A.﹣6(1﹣3﹣10)B.C.3(1﹣3﹣10)D.3(1+3﹣10)【分析】由已知可知,数列{an}是以﹣为公比的等比数列,结合已知可求a1,然后代入等比数列的求和公式可求【解答】解:∵3an+1+an=0∴∴数列{an}是以﹣为公比的等比数列∵∴a1=4由等比数列的求和公式可得,S10==3(1﹣3﹣10)故选C【点评】本题主要考查了等比数列的通项公式及求和公式的简单应用,属于基础试题 5.(2013•新课标Ⅱ)等比数列{an}的前n项和为Sn,已知S3=a2+10a1,a5=9,则a1=(  )A.B.C.D.【分析】设等比数列{an}的公比为q,利用已知和等比数列的通项公式即可得到高中教育\n高考,解出即可.【解答】解:设等比数列{an}的公比为q,∵S3=a2+10a1,a5=9,∴,解得.∴.故选C.【点评】熟练掌握等比数列的通项公式是解题的关键. 6.(2008•全国卷Ⅰ)已知等差数列{an}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=(  )A.138B.135C.95D.23【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选C【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式. 7.(2013•新课标Ⅰ)设等差数列{an}的前n项和为Sn,若Sm﹣1=﹣2,Sm=0,Sm+1=3,则m=(  )高中教育\n高考A.3B.4C.5D.6【分析】由an与Sn的关系可求得am+1与am,进而得到公差d,由前n项和公式及Sm=0可求得a1,再由通项公式及am=2可得m值.【解答】解:am=Sm﹣Sm﹣1=2,am+1=Sm+1﹣Sm=3,所以公差d=am+1﹣am=1,Sm==0,得a1=﹣2,所以am=﹣2+(m﹣1)•1=2,解得m=5,故选C.【点评】本题考查等差数列的通项公式、前n项和公式及通项an与Sn的关系,考查学生的计算能力. 8.(2014•新课标Ⅱ)等差数列{an}的公差为2,若a2,a4,a8成等比数列,则{an}的前n项和Sn=(  )A.n(n+1)B.n(n﹣1)C.D.【分析】由题意可得a42=(a4﹣4)(a4+8),解得a4可得a1,代入求和公式可得.【解答】解:由题意可得a42=a2•a8,即a42=(a4﹣4)(a4+8),解得a4=8,∴a1=a4﹣3×2=2,∴Sn=na1+d,=2n+×2=n(n+1),故选:A.【点评】本题考查等差数列的性质和求和公式,属基础题. 9.(2015•北京)设{an}是等差数列,下列结论中正确的是(  )高中教育\n高考A.若a1+a2>0,则a2+a3>0B.若a1+a3<0,则a1+a2<0C.若0<a1<a2,则a2D.若a1<0,则(a2﹣a1)(a2﹣a3)>0【分析】对选项分别进行判断,即可得出结论.【解答】解:若a1+a2>0,则2a1+d>0,a2+a3=2a1+3d>2d,d>0时,结论成立,即A不正确;若a1+a3<0,则a1+a2=2a1+d<0,a2+a3=2a1+3d<2d,d<0时,结论成立,即B不正确;{an}是等差数列,0<a1<a2,2a2=a1+a3>2,∴a2>,即C正确;若a1<0,则(a2﹣a1)(a2﹣a3)=﹣d2≤0,即D不正确.故选:C.【点评】本题考查等差数列的通项,考查学生的计算能力,比较基础. 二.解答题(共14小题)10.(2015•四川)设数列{an}(n=1,2,3,…)的前n项和Sn满足Sn=2an﹣a1,且a1,a2+1,a3成等差数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)记数列{}的前n项和为Tn,求使得|Tn﹣1|成立的n的最小值.【分析】(Ⅰ)由已知数列递推式得到an=2an﹣1(n≥2),再由已知a1,a2+1,a3成等差数列求出数列首项,可得数列{an}是首项为2,公比为2的等比数列,则其通项公式可求;(Ⅱ)由(Ⅰ)求出数列{}的通项公式,再由等比数列的前n项和求得Tn,结合求解指数不等式得n的最小值.【解答】解:(Ⅰ)由已知Sn=2an﹣a1,有an=Sn﹣Sn﹣1=2an﹣2an﹣1(n≥2),即an=2an﹣1(n≥2),从而a2=2a1,a3=2a2=4a1,高中教育\n高考又∵a1,a2+1,a3成等差数列,∴a1+4a1=2(2a1+1),解得:a1=2.∴数列{an}是首项为2,公比为2的等比数列.故;(Ⅱ)由(Ⅰ)得:,∴.由,得,即2n>1000.∵29=512<1000<1024=210,∴n≥10.于是,使|Tn﹣1|成立的n的最小值为10.【点评】本题考查等差数列与等比数列的概念、等比数列的通项公式与前n项和公式等基础知识,考查运算求解能力,是中档题. 11.(2015•湖北)设等差数列{an}的公差为d,前n项和为Sn,等比数列{bn}的公比为q,已知b1=a1,b2=2,q=d,S10=100.(1)求数列{an},{bn}的通项公式(2)当d>1时,记cn=,求数列{cn}的前n项和Tn.【分析】(1)利用前10项和与首项、公差的关系,联立方程组计算即可;(2)当d>1时,由(1)知cn=,写出Tn、Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)设a1=a,由题意可得,解得,或,当时,an=2n﹣1,bn=2n﹣1;高中教育\n高考当时,an=(2n+79),bn=9•;(2)当d>1时,由(1)知an=2n﹣1,bn=2n﹣1,∴cn==,∴Tn=1+3•+5•+7•+9•+…+(2n﹣1)•,∴Tn=1•+3•+5•+7•+…+(2n﹣3)•+(2n﹣1)•,∴Tn=2+++++…+﹣(2n﹣1)•=3﹣,∴Tn=6﹣.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. 12.(2014•新课标Ⅱ)已知数列{an}满足a1=1,an+1=3an+1.(Ⅰ)证明{an+}是等比数列,并求{an}的通项公式;(Ⅱ)证明:++…+<.【分析】(Ⅰ)根据等比数列的定义,后一项与前一项的比是常数,即=常数,又首项不为0,所以为等比数列;再根据等比数列的通项化式,求出{an}的通项公式;(Ⅱ)将进行放大,即将分母缩小,使得构成一个等比数列,从而求和,证明不等式.【解答】证明(Ⅰ)==3,∵≠0,∴数列{an+}是以首项为,公比为3的等比数列;高中教育\n高考∴an+==,即;(Ⅱ)由(Ⅰ)知,当n≥2时,∵3n﹣1>3n﹣3n﹣1,∴<=,∴当n=1时,成立,当n≥2时,++…+<1+…+==<.∴对n∈N+时,++…+<.【点评】本题考查的是等比数列,用放缩法证明不等式,证明数列为等比数列,只需要根据等比数列的定义就行;数列与不等式常结合在一起考,放缩法是常用的方法之一,通过放大或缩小,使原数列变成一个等比数列,或可以用裂项相消法求和的新数列.属于中档题. 13.(2013•新课标Ⅱ)已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.(Ⅰ)求{an}的通项公式;(Ⅱ)求a1+a4+a7+…+a3n﹣2.【分析】(I)设等差数列{an}的公差为d≠0,利用成等比数列的定义可得,,再利用等差数列的通项公式可得,化为d(2a1+25d)=0,解出d即可得到通项公式an;(II)由(I)可得a3n﹣2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.利用等差数列的前n项和公式即可得出a1+a4+a7+…+a3n﹣2.高中教育\n高考【解答】解:(I)设等差数列{an}的公差为d≠0,由题意a1,a11,a13成等比数列,∴,∴,化为d(2a1+25d)=0,∵d≠0,∴2×25+25d=0,解得d=﹣2.∴an=25+(n﹣1)×(﹣2)=﹣2n+27.(II)由(I)可得a3n﹣2=﹣2(3n﹣2)+27=﹣6n+31,可知此数列是以25为首项,﹣6为公差的等差数列.∴Sn=a1+a4+a7+…+a3n﹣2===﹣3n2+28n.【点评】熟练掌握等差数列与等比数列的通项公式及其前n项和公式是解题的关键. 14.(2013•大纲版)等差数列{an}中,a7=4,a19=2a9,(Ⅰ)求{an}的通项公式;(Ⅱ)设bn=,求数列{bn}的前n项和Sn.【分析】(I)由a7=4,a19=2a9,结合等差数列的通项公式可求a1,d,进而可求an(II)由==,利用裂项求和即可求解【解答】解:(I)设等差数列{an}的公差为d∵a7=4,a19=2a9,∴解得,a1=1,d=∴=高中教育\n高考(II)∵==∴sn===【点评】本题主要考查了等差数列的通项公式及裂项求和方法的应用,试题比较容易 15.(2011•新课标)已知等比数列{an}中,a1=,公比q=.(Ⅰ)Sn为{an}的前n项和,证明:Sn=(Ⅱ)设bn=log3a1+log3a2+…+log3an,求数列{bn}的通项公式.【分析】(I)根据数列{an}是等比数列,a1=,公比q=,求出通项公式an和前n项和Sn,然后经过运算即可证明.(II)根据数列{an}的通项公式和对数函数运算性质求出数列{bn}的通项公式.【解答】证明:(I)∵数列{an}为等比数列,a1=,q=∴an=×=,Sn=又∵==Sn∴Sn=(II)∵an=∴bn=log3a1+log3a2+…+log3an=﹣log33+(﹣2log33)+…+(﹣nlog33)=﹣(1+2+…+n)高中教育\n高考=﹣∴数列{bn}的通项公式为:bn=﹣【点评】本题主要考查等比数列的通项公式、前n项和以及对数函数的运算性质. 16.(2015•天津)已知数列{an}满足an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,且a2+a3,a3+a4,a4+a5成等差数列(1)求q的值和{an}的通项公式;(2)设bn=,n∈N*,求数列{bn}的前n项和.【分析】(1)通过an+2=qan、a1、a2,可得a3、a5、a4,利用a2+a3,a3+a4,a4+a5成等差数列,计算即可;(2)通过(1)知bn=,n∈N*,写出数列{bn}的前n项和Tn、2Tn的表达式,利用错位相减法及等比数列的求和公式,计算即可.【解答】解:(1)∵an+2=qan(q为实数,且q≠1),n∈N*,a1=1,a2=2,∴a3=q,a5=q2,a4=2q,又∵a2+a3,a3+a4,a4+a5成等差数列,∴2×3q=2+3q+q2,即q2﹣3q+2=0,解得q=2或q=1(舍),∴an=;(2)由(1)知bn===,n∈N*,记数列{bn}的前n项和为Tn,则Tn=1+2•+3•+4•+…+(n﹣1)•+n•,高中教育\n高考∴2Tn=2+2+3•+4•+5•+…+(n﹣1)•+n•,两式相减,得Tn=3++++…+﹣n•=3+﹣n•=3+1﹣﹣n•=4﹣.【点评】本题考查求数列的通项与前n项和,考查分类讨论的思想,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. 17.(2015•山东)已知数列{an}是首项为正数的等差数列,数列{}的前n项和为.(1)求数列{an}的通项公式;(2)设bn=(an+1)•2,求数列{bn}的前n项和Tn.【分析】(1)通过对cn=分离分母,并项相加并利用数列{}的前n项和为即得首项和公差,进而可得结论;(2)通过bn=n•4n,写出Tn、4Tn的表达式,两式相减后利用等比数列的求和公式即得结论.【解答】解:(1)设等差数列{an}的首项为a1、公差为d,则a1>0,∴an=a1+(n﹣1)d,an+1=a1+nd,令cn=,则cn==[﹣],∴c1+c2+…+cn﹣1+cn=[﹣+﹣+…+﹣]=[﹣]高中教育\n高考==,又∵数列{}的前n项和为,∴,∴a1=1或﹣1(舍),d=2,∴an=1+2(n﹣1)=2n﹣1;(2)由(1)知bn=(an+1)•2=(2n﹣1+1)•22n﹣1=n•4n,∴Tn=b1+b2+…+bn=1•41+2•42+…+n•4n,∴4Tn=1•42+2•43+…+(n﹣1)•4n+n•4n+1,两式相减,得﹣3Tn=41+42+…+4n﹣n•4n+1=•4n+1﹣,∴Tn=.【点评】本题考查求数列的通项及求和,利用错位相减法是解决本题的关键,注意解题方法的积累,属于中档题. 18.(2015•浙江)已知数列{an}和{bn}满足a1=2,b1=1,an+1=2an(n∈N*),b1+b2+b3+…+bn=bn+1﹣1(n∈N*)(Ⅰ)求an与bn;(Ⅱ)记数列{anbn}的前n项和为Tn,求Tn.【分析】(Ⅰ)直接由a1=2,an+1=2an,可得数列{an}为等比数列,由等比数列的通项公式求得数列{an}的通项公式;再由b1=1,b1+b2+b3+…+bn=bn+1﹣1,取n=1求得b2=2,当n≥2时,得另一递推式,作差得到,整理得数列{}为常数列,由此可得{bn}的通项公式;高中教育\n高考(Ⅱ)求出,然后利用错位相减法求数列{anbn}的前n项和为Tn.【解答】解:(Ⅰ)由a1=2,an+1=2an,得.由题意知,当n=1时,b1=b2﹣1,故b2=2,当n≥2时,b1+b2+b3+…+=bn﹣1,和原递推式作差得,,整理得:,∴;(Ⅱ)由(Ⅰ)知,,因此,两式作差得:,(n∈N*).【点评】本题主要考查等差数列的通项公式、等差数列和等比数列等基础知识,同时考查数列求和等基本思想方法,以及推理论证能力,是中档题. 19.(2015•安徽)已知数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.(1)求数列{an}的通项公式;(2)设Sn为数列{an}的前n项和,bn=,求数列{bn}的前n项和Tn.【分析】(1)根据等比数列的通项公式求出首项和公比即可,求数列{an}的通项公式;(2)求出bn=,利用裂项法即可求数列{bn}的前n项和Tn.【解答】解:(1)∵数列{an}是递增的等比数列,且a1+a4=9,a2a3=8.∴a1+a4=9,a1a4=a2a3=8.解得a1=1,a4=8或a1=8,a4=1(舍),高中教育\n高考解得q=2,即数列{an}的通项公式an=2n﹣1;(2)Sn==2n﹣1,∴bn===﹣,∴数列{bn}的前n项和Tn=+…+﹣=﹣=1﹣.【点评】本题主要考查数列的通项公式以及数列求和的计算,利用裂项法是解决本题的关键. 20.(2015•山东)设数列{an}的前n项和为Sn,已知2Sn=3n+3.(Ⅰ)求{an}的通项公式;(Ⅱ)若数列{bn},满足anbn=log3an,求{bn}的前n项和Tn.【分析】(Ⅰ)利用2Sn=3n+3,可求得a1=3;当n>1时,2Sn﹣1=3n﹣1+3,两式相减2an=2Sn﹣2Sn﹣1,可求得an=3n﹣1,从而可得{an}的通项公式;(Ⅱ)依题意,anbn=log3an,可得b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,于是可求得T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),利用错位相减法可求得{bn}的前n项和Tn.【解答】解:(Ⅰ)因为2Sn=3n+3,所以2a1=31+3=6,故a1=3,当n>1时,2Sn﹣1=3n﹣1+3,此时,2an=2Sn﹣2Sn﹣1=3n﹣3n﹣1=2×3n﹣1,即an=3n﹣1,所以an=.(Ⅱ)因为anbn=log3an,所以b1=,当n>1时,bn=31﹣n•log33n﹣1=(n﹣1)×31﹣n,高中教育\n高考所以T1=b1=;当n>1时,Tn=b1+b2+…+bn=+(1×3﹣1+2×3﹣2+…+(n﹣1)×31﹣n),所以3Tn=1+(1×30+2×3﹣1+3×3﹣2+…+(n﹣1)×32﹣n),两式相减得:2Tn=+(30+3﹣1+3﹣2+…+32﹣n﹣(n﹣1)×31﹣n)=+﹣(n﹣1)×31﹣n=﹣,所以Tn=﹣,经检验,n=1时也适合,综上可得Tn=﹣.【点评】本题考查数列的求和,着重考查数列递推关系的应用,突出考查“错位相减法”求和,考查分析、运算能力,属于中档题. 21.(2008•全国卷Ⅱ)设数列{an}的前n项和为Sn.已知a1=a,an+1=Sn+3n,n∈N*.由(Ⅰ)设bn=Sn﹣3n,求数列{bn}的通项公式;(Ⅱ)若an+1≥an,n∈N*,求a的取值范围.【分析】(Ⅰ)依题意得Sn+1=2Sn+3n,由此可知Sn+1﹣3n+1=2(Sn﹣3n).所以bn=Sn﹣3n=(a﹣3)2n﹣1,n∈N*.(Ⅱ)由题设条件知Sn=3n+(a﹣3)2n﹣1,n∈N*,于是,an=Sn﹣Sn﹣1=,由此可以求得a的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,Sn+1﹣Sn=an+1=Sn+3n,即Sn+1=2Sn+3n,由此得Sn+1﹣3n+1=2Sn+3n﹣3n+1=2(Sn﹣3n).(4分)因此,所求通项公式为bn=Sn﹣3n=(a﹣3)2n﹣1,n∈N*.①(6分)(Ⅱ)由①知Sn=3n+(a﹣3)2n﹣1,n∈N*,于是,当n≥2时,高中教育\n高考an=Sn﹣Sn﹣1=3n+(a﹣3)×2n﹣1﹣3n﹣1﹣(a﹣3)×2n﹣2=2×3n﹣1+(a﹣3)2n﹣2,an+1﹣an=4×3n﹣1+(a﹣3)2n﹣2=,当n≥2时,⇔a≥﹣9.又a2=a1+3>a1.综上,所求的a的取值范围是[﹣9,+∞).(12分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件. 22.(2014•山东)已知等差数列{an}的公差为2,前n项和为Sn,且S1,S2,S4成等比数列.(Ⅰ)求数列{an}的通项公式;(Ⅱ)令bn=(﹣1)n﹣1,求数列{bn}的前n项和Tn.【分析】(Ⅰ)利用等差数列与等比数列的通项公式及其前n项和公式即可得出;(Ⅱ)由(Ⅰ)可得bn=.对n分类讨论“裂项求和”即可得出.【解答】解:(Ⅰ)∵等差数列{an}的公差为2,前n项和为Sn,∴Sn==n2﹣n+na1,∵S1,S2,S4成等比数列,∴,∴,化为,解得a1=1.∴an=a1+(n﹣1)d=1+2(n﹣1)=2n﹣1.(Ⅱ)由(Ⅰ)可得bn=(﹣1)n﹣1==.∴Tn=﹣++…+.高中教育\n高考当n为偶数时,Tn=﹣++…+﹣=1﹣=.当n为奇数时,Tn=﹣++…﹣+=1+=.∴Tn=.【点评】本题考查了等差数列与等比数列的通项公式及其前n项和公式等基础知识与基本技能方法,考查了推理能力、计算能力、“裂项求和”、分类讨论思想方法,属于难题. 23.(2014•安徽)数列{an}满足a1=1,nan+1=(n+1)an+n(n+1),n∈N*.(Ⅰ)证明:数列{}是等差数列;(Ⅱ)设bn=3n•,求数列{bn}的前n项和Sn.【分析】(Ⅰ)将nan+1=(n+1)an+n(n+1)的两边同除以n(n+1)得,由等差数列的定义得证.(Ⅱ)由(Ⅰ)求出bn=3n•=n•3n,利用错位相减求出数列{bn}的前n项和Sn.【解答】证明(Ⅰ)∵nan+1=(n+1)an+n(n+1),∴,∴,∴数列{}是以1为首项,以1为公差的等差数列;(Ⅱ)由(Ⅰ)知,,∴,bn=3n•=n•3n,高中教育\n高考∴•3n﹣1+n•3n①•3n+n•3n+1②①﹣②得3n﹣n•3n+1==∴【点评】本题考查利用等差数列的定义证明数列是等差数列;考查数列求和的方法:错位相减法.求和的关键是求出通项选方法. 高中教育

相关文档