• 2.17 MB
  • 2022-08-03 发布

高中英语-Unit2-The-United-Kingdom课件3-新人教版必修5-高中课件精选ppt课件

  • 87页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
高中英语-Unit2-The-United-Kingdom课件3-新人教版必修5-高中课件精选\nSectionⅢGrammar&Writing2\n3\n\n\n\n7\n8\n9\n10\n11\n12\n13\n14\n15\n16\n17\n18\n19\n20\n21\n22\n23\n24\n25\n26\n27\n28\n29\n30\n31\n32\n33\n34\n35\n36\n37\n完成第二单元综合微评38\n39\n40\n41\n42\n43\n44\n45\n46\n47\n48\n49\n50\n51\n52\n53\n54\n55\n56\n57\n58\n59\n60\n61\n62\n63\n64\n65\n实变函数主讲教师:吴行平辅导课程九\n第四章可测函数本章引进一个新的函数类——可测函数类,并讨论它的性质,为下一章的勒贝格积分作准备。我们将看到,可测函数与我们熟悉的连续函数有密切的联系,在可测函数类中进行运算,如代数运算、取极限运算等是相当方便的,所得结果仍是可测函数。\n第一节  可测函数及其基本性质本节主要介绍可测函数的概念及其性质,通过本节的学习,我们要掌握可测函数的概念,可测函数的基本性质,即可测函数的四则运算和极限运算仍为可测函数,同时我们要知道可测集上的连续函数,简单函数,区间上的单调函数均为可测函数。另外,本节最后给出的“几乎处处”概念是一个很重要的概念\n设E是一个可测子集(有界或无界),是定义在E上的实函数(其值可以为无穷大)。关于包含在内的实数运算作如下规定:是全体有限实数的上确界,是全体有限实数的下确界:上(下)方无界的递增(减)数列\n对于任何有限实数\n无意义设是任一实数,记=\n定义1设是定义在可测集E上的实函数。如果对每一个实数集恒可测(勒贝格可测),则称是定义在E上的(勒贝格)可测函数。\n定理1设是定义在可测集E上的实函数,下列任一个条件都是在E上(勒贝格)可测的充要条件:(1)对任何有限实数,都可测;(2)对任何有限实数,都可测;(3)对任何有限实数,都可测;(4)对任何有限实数,都可测\n证明与对于E是互余的,同样与对于E也是互余的。故在前三个条件中,只须证明(1)的充要性。事实上,易知==\n关于(4)的充要性,只需注意表示式=时=\n推论1设在E上可测,则总可测,不论是有限实数或,。证只需注意-===\n例1定义在零测集上的任意实函数均为可测函数。事实上,零测集的子集总是可测集。每一个实数,集恒可测例2区间上的连续函数及单调函数都是可测函数。\n例1设=,在上定义狄里克雷函数如下:=由于对任意实数,集为(当),中有理点集空集。它们都是可测集。故是E上的可测函数。\n定义2定义在的实函数称为在连续,如果有限,而且对于的任邻域,存在的某邻域,使得,即只要且时,便有。如果在E中每一点都连续,则称在E上连续。\n定义3设的定义域E可分为有限个互不相交的可测集,=,使在每个上都等于某个常数则称为简单函数。\n例4可测集E上的连续函数是可测函数。事实上,设,则由连续性假设,存在x的某邻域,使令==\n定理2(1)设是可测集E上的可测函数,而为可测子集,则看作定义在上的函数时,它是上的可测函数;(2)设是定义在有限可测集的并集上,且在每个上都可测,则在E上也可测。\n证(1)对于任何有限数, =, 由假设等式右边是可测集。(2)E是可测集而且对于任何有限数,有=由假设等式右边是可测集。\n例1    任 何简单函数都是可测函数。事实上,定义在可测集上的常值函数显然是可测的,由定理2便知任何简单函数都是可测函数。\n定理3设是上一列(或有限个)可测函数,则=与都是可测函数。证由于=,=而得证。\n定理4设是上一列可测函数,则=,也在E上可测,特别当=存在时,它也在E上可测。\n证由于==,=重复应用定理3即得证。

相关文档