- 574.00 KB
- 2022-08-03 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
组合与组合数公式\n问题一:从甲、乙、丙3名同学中选出2名去参加某天的一项活动,其中1名同学参加上午的活动,1名同学参加下午的活动,有多少种不同的选法?问题二:从甲、乙、丙3名同学中选出2名去参加一项活动,有多少种不同的选法?甲、乙;甲、丙;乙、丙有顺序无顺序\n一般地,从n个不同元素中取出m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合.组合定义:排列定义:一般地说,从n个不同元素中,取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.思考:排列与组合的概念,它们有什么共同点、不同点?共同点:都要“从n个不同元素中任取m个元素”不同点:对于所取出的元素,排列要“按照一定的顺序排成一列”,而组合却是“不管怎样的顺序并成一组”.排列与元素的顺序有关,而组合则与元素的顺序无关想一想:ab与ba是相同的排列还是相同的组合?为什么?两个相同的排列有什么特点?两个相同的组合呢?\n判断下列问题是组合问题还是排列问题?(1)设集合A={a,b,c,d,e},则集合A的含有3个元素的子集有多少个?(2)某铁路线上有5个车站,则这条铁路线上共需准备多少种车票?有多少种不同的火车票价?组合问题排列问题(3)10名同学分成人数相同的数学和英语两个学习小组,共有多少种分法?组合问题(4)10人聚会,见面后每两人之间要握手相互问候,共需握手多少次?组合问题(5)从4个风景点中选出2个安排游览,有多少种不同的方法?组合问题(6)从4个风景点中选出2个,并确定这2个风景点的游览顺序,有多少种不同的方法?排列问题组合问题\n如:从a,b,c三个不同的元素中取出两个元素的所有组合分别是:ab,ac,bc如:已知4个元素a,b,c,d,写出每次取出两个元素的所有组合.abcdbcdcdab,ac,ad,bc,bd,cd(3个)6个\n练习:中国、美国、古巴、俄罗斯四国女排邀请赛,通过单循环决出冠亚军.(1)列出所有各场比赛的双方;(2)列出所有冠亚军的可能情况。(1)中国—美国中国—古巴中国—俄罗斯美国—古巴美国—俄罗斯古巴—俄罗斯(2)冠军中中中美美美古古古俄俄俄亚军美古俄中古俄中美俄中美古\n组合数:从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数,用符号表示如:思考:如何计算:\n写出从a,b,c,d四个元素中任取三个元素的所有组合。aabc,abd,acd,bcd.bcddbccd写出从a,b,c,d四个元素中任取三个元素的所有排列.cdbdbccdacadbdadabbcacabbcdacdabdabcbacd\nabcbaccabdababdbadcaddacacbbcacbadbaacdbcdcbddbcadbbdacdadcaadcbdccdbdcb所有的排列为:\n组合排列abcabdacdbcdabcbaccabacbbcacbaabdbaddabadbbdadbaacdcaddacadccdadcabcdcbddbcbdccdbdcb\n\n组合数公式:从n个不同元中取出m个元素的排列数\n例1计算:⑴⑵.例2求证:\n例6.一位教练的足球队共有17名初级学员,他们中以前没有一人参加过比赛.按照足球比赛规则,比赛时一个足球队的上场队员是11人.问:(l)这位教练从这17名学员中可以形成多少种学员上场方案?(2)如果在选出11名上场队员时,还要确定其中的守门员,那么教练员有多少种方式做这件事情?分析:对于(1),根据题意,17名学员没有角色差异,地位完全一样,因此这是一个从17个不同元素中选出11个元素的组合问题;对于(2),守门员的位置是特殊的,其余上场学员的地位没有差异,因此这是一个分步完成的组合问题.\n解:(1)由于上场学员没有角色差异,所以可以形成的学员上场方案有=12376(种).(2)教练员可以分两步完成这件事情:第1步,从17名学员中选出11人组成上场小组,共有种选法;第2步,从选出的11人中选出1名守门员,共有种选法.所以教练员做这件事情的方法数有=136136(种).\n例7.(1)平面内有10个点,以其中每2个点为端点的线段共有多少条?(2)平面内有10个点,以其中每2个点为端点的有向线段共有多少条?解:(1)以平面内10个点中每2个点为端点的线段的条数,就是从10个不同的元素中取出2个元素的组合数,即线段共有(条).(2)由于有向线段的两个端点中一个是起点、另一个是终点,以平面内10个点中每2个点为端点的有向线段的条数,就是从10个不同元素中取出2个元素的排列数,即有向线段共有(条).\n例8.在100件产品中,有98件合格品,2件次品.从这100件产品中任意抽出3件.(1)有多少种不同的抽法?(2)抽出的3件中恰好有1件是次品的抽法有多少种?(3)抽出的3件中至少有1件是次品的抽法有多少种?解:(1)所求的不同抽法的种数,就是从100件产品中取出3件的组合数,所以共有=161700(种).(2)从2件次品中抽出1件次品的抽法有种,从98件合格品中抽出2件合格品的抽法有种,因此抽出的3件中恰好有1件次品的抽法有=9506(种).\n(3)解法1从100件产品抽出的3件中至少有1件是次品,包括有1件次品和有2件次品两种情况.在第(2)小题中已求得其中1件是次品的抽法有种,因此根据分类加法计数原理,抽出的3件中至少有一件是次品的抽法有+=9604(种).解法2抽出的3件产品中至少有1件是次品的抽法的种数,也就是从100件中抽出3件的抽法种数减去3件中都是合格品的抽法的种数,即=161700-152096=9604(种).说明:“至少”“至多”的问题,通常用分类法或间接法求解。\n\n\n\n