• 108.50 KB
  • 2022-08-05 发布

【高中数学课件】五类抽象函数解法例说课件

  • 6页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
五类抽象函数解法例说天马行空官方博客:http://t.qq.com/tmxk_docin;QQ:1318241189;QQ群:175569632  文[1]把一类没有给出具体解析式的函数称之为抽象函数。由于抽象函数具有一定的抽象性,其性质隐而不露,因而学生对抽象函数问题比较害怕。其实,大量的抽象函数都是以中学阶段所学的基本函数为背景抽象而得,解题时,若能从研究抽象函数的“背景”入手,根据题设中抽象函数的性质,通过类比、猜想出它可能为某种基本函数,常可觅得解题思路。本文从这一认识出发,例谈五种类型的抽象函数及其解法。1、线性函数型抽象函数线性函数型抽象函数,是由线性函数抽象而得的函数。例1、已知函数f(x)对任意实数x,y,均有f(x+y)=f(x)+f(y),且当x>0时,f(x)>0,f(-1)=-2,求f(x)在区间[-2,1]上的值域。分析:由题设可知,函数f(x)是的抽象函数,因此求函数f(x)的值域,关键在于研究它的单调性。解:设,∵当,∴,∵,∴,即,∴f(x)为增函数。在条件中,令y=-x,则,再令x=y=0,则f(0)=2f(0),∴f(0)=0,故f(-x)=f(x),f(x)为奇函数,∴ f(1)=-f(-1)=2,又f(-2)=2f(-1)=-4,∴f(x)的值域为[-4,2]。例2、已知函数f(x)对任意,满足条件f(x)+f(y)=2+f(x+y),且当x>0时,f(x)>2,f(3)=5,求不等式的解。\n分析:由题设条件可猜测:f(x)是y=x+2的抽象函数,且f(x)为单调增函数,如果这一猜想正确,也就可以脱去不等式中的函数符号,从而可求得不等式的解。解:设,∵当,∴,则,即,∴f(x)为单调增函数。∵,又∵f(3)=5,∴f(1)=3。∴,∴,即,解得不等式的解为-1