• 391.50 KB
  • 2022-08-05 发布

高中数学必修四课件:《任意角的概念》课件

  • 29页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
必修四第一章三角函数\n1.1.1任意角的概念\n1、角的概念初中是如何定义角的?从一个点出发引出的两条射线构成的几何图形.角也可以看成是由一条射线绕着它的端点旋转而成的。初中学过的角的范围是:0º至360º。\n然而生活中有很多实例的角会不在该范围:体操运动员转体720º(即“转体2周”),跳水运动员向内、向外转体1080º(“转体3周”);经过1小时,时针、分针、秒针各转了多少度?这些例子中有的角不仅不在范围:0º至360º,而且方向不同,有必要将角的概念推广到任意角,那么用什么办法才能推广到任意角?关键是用运动的观点来看待角的变化。\n2.角的概念的推广⑴“旋转”形成角如图:一条射线由原来的位置OA,绕着它的端点O按逆时针方向旋转到另一位置OB,就形成角α.旋转开始时的射线OA叫做角α的始边,旋转终止的射线OB叫做角α的终边,射线的端点O叫做角α的顶点.\n⑵.“正角”与“负角”、“零角”我们规定:按逆时针方向旋转所形成的角叫做正角,按顺时针方向旋转所形成的角叫做负角,如图,以OA为始边的角α=210°,β=-150°,γ=660°,\n特别地,当一条射线没有作任何旋转时,我们也认为这时形成了一个角,并把这个角叫做零角即零度角(0º).此时零角的始边与终边重合。角的记法:角α或可以简记成∠α,或简记为:α.如∠α=-1500,α=00,α=6600等等……\n⑶角的概念扩展的意义:用“旋转”定义角之后,角的范围大大地扩大了①角有正负之分;如:=210,=150,=660.②角可以任意大;实例:体操动作:旋转2周(360×2=720)3周(360×3=1080)③还有零角,一条射线,没有旋转.\n角的概念推广以后,它包括任意大小的正角、负角和零角.要注意,正角和负角是表示具有相反意义的旋转量,它的正负规定源于实际的需要,就好象与正数、负数的规定一样,零角无正负,就好象数零无正负一样.\n用旋转来描述角,需要注意三个要素:旋转中心、旋转方向和旋转量(2)旋转方向:旋转变换的方向分为逆时针和顺时针两种,这是一对意义相反的量,根据以往的经验,我们可以把一对意义相反的量用正负数来表示,那么许多问题就可以解决了;(1)旋转中心:作为角的顶点.\n(3)旋转量:当旋转超过一周时,旋转量即超过360º,角度的绝对值可大于360º.于是就会出现720º,-540º等角度.旋转方向决定角的符号,旋转量决定角的大小。\n3.象限角为了研究方便,我们往往在平面直角坐标系中来讨论角。角的顶点重合于坐标原点,角的始边重合于x轴的非负半轴,这样一来,角的终边落在第几象限,我们就说这个角是第几象限的角。(角的终边落在坐标轴上,则此角不属于任何一个象限此时这种角称为:轴线角)例如:30、390、330是第一象限角,300、60是第四象限角,585、1300是第三象限角,135、2000是第二象限角等\n4.终边相同的角⑴观察:390,330角,它们的终边都与30角的终边相同.⑵探究:终边相同的角都可以表示此角与k(k∈Z)个周角的和:390=30+360(k=1),330=30360(k=-1)30=30+0×360(k=0),1470=30+4×360(k=4)1770=305×360(k=-5)\n⑶结论:所有与终边相同的角连同在内可以构成一个集合:{β|β=α+k·360º,k∈Z}即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和。\n⑷注意以下四点:①k∈Z,K>0,表示逆时针旋转,K<0,表示顺时针旋转.②是任意角;③k·360º与之间是“+”号,如k·360º-30º,应看成(-30º)+k·360º;④终边相同的角不一定相等,但相等的角,终边一定相同,终边相同的角有无数多个,它们相差360º的整数倍.所有与终边相同的角连同在内可以构成一个集合:{β|β=α+k·360º,k∈Z}即:任何一个与角终边相同的角,都可以表示成角与整数个周角的和。\n例1.在0º~360º范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角.(1)-120º;(2)640º;(3)-950º12′.解:⑴∵-120º=240º+(-1)×360º,∴-120º的角与240º的角终边相同,它是第三象限角.⑵∵640º=280º+1×360º,∴640º的角与280º的角终边相同,它是第四象限角.即:[00,3600)\n⑶解:∵-950º12’=129º48’+(-3)×360º,∴-950º12’的角与129º48’的角终边相同,它是第二象限角.(3)-950º12′.例1.在0º~360º范围内,找出与下列各角终边相同的角,并判断它是哪个象限的角.\n例2.写出与下列各角终边相同的角的集合S,并把S中在-360º~720º间的角写出来:(1)60º;(2)-21º;(3)363º14′.解:(1)S={β|β=60º+k·360º,k∈Z},S中在-360º~720º间的角是0×360º+60º=60º;-1×360º+60º=-300º;1×360º+60º=420º.方法二\n(2)S={β|β=-21º+k·360º,k∈Z}S中在-360º~720º间的角是0×360º-21º=-21º;1×360º-21º=339º;2×360º-21º=699º.(3)S={β|β=363º14’+k·360º,k∈Z}S中在-360º~720º间的角是0×360º+363º14’=363º14’;-1×360º+363º14’=3º14’;-2×360º+363º14’=-356º46’.例2.写出与下列各角终边相同的角的集合S,并把S中在-360º~720º间的角写出来:(1)60º;(2)-21º;(3)363º14′.\n例3写出终边分别落在四个象限的角的集合.终边落在坐标轴上的情形xyo0°90°180°270°+K·360°+K·360°+K·360°+K·360°或360°+K·360°\n第一象限的角表示为{|k360<<90+k360,kZ};第二象限的角表示为{|90+k360<<180+k360,kZ};第三象限的角表示为{|180+k360<<270+k360,kZ}第四象限的角表示为{|270+k360<<360+k360,kZ}\n例4、写出终边落在y轴上的角的集合.xyo0°90°180°270°+K·360°+K·360°+K·360°+K·360°\n例4解:终边落在y轴非负半轴和非正半轴上的角的集合分别记为为S1,S2S1={β|β=90º+K∙360º,K∈Z}S2={β|β=270º+K∙360º,K∈Z}={β|β=90º+180º+K360º,K∈Z}={β|β=90º+(2K+1)∙180º,K∈Z}即:S2={β|β=90º+180º的奇数倍}同理S1={β|β=90º+180º的偶数倍}终边落在y轴上的角的集合为S=S1∪S2S={β|β=90º+K∙180º,K∈Z}\n课堂练习1.锐角是第几象限的角?第一象限的角是否都是锐角?小于90º的角是锐角吗?区间(0º,90º)内的角是锐角吗?答:锐角是第一象限角;第一象限角不一定是锐角;小于90º的角可能是零角或负角,故它不一定是锐角;区间(0º,90º)内的角是锐角.\n2.已知角的顶点与坐标系原点重合,始边落在x轴的非负半轴上,作出下列各角,并指出它们是哪个象限的角?(1)420º,(2)-75º,(3)855º,(4)-510º.答:(1)第一象限角;(2)第四象限角,(3)第二象限角,(4)第三象限角.\n3、已知α,β角的终边相同,那么α-β的终边在()Ax轴的非负半轴上By轴的非负半轴上Cx轴的非正半轴上Dy轴的非正半轴上A4、终边与坐标轴重合的角的集合是()A{β|β=k·360º(k∈Z)}B{β|β=k·180º(k∈Z)}C{β|β=k·90º(k∈Z)}D{β|β=k·180º+90º(k∈Z)}C\n5、已知角2α的终边在x轴的上方,那么α是()A第一象限角B第一、二象限角C第一、三象限角D第一、四象限角C6、若α是第四象限角,则180º-α是()A第一象限角B第二象限角C第三象限角D第四象限角C\n7、在直角坐标系中,若α与β终边互相垂直,那么α与β之间的关系是()A.β=α+90oBβ=α±90oCβ=k·360o+90o+α,k∈ZDβ=k·360o±90o+α,k∈ZD8、若90º<β<α<135º,则α-β的范围是__________,α+β的范围是___________;(0º,45º)(180º,270º)\n9、若β的终边与60º角的终边相同,那么在[0º,360º)范围内,终边与角的终边相同的角为______________;解:β=k·360º+60º,k∈Z.所以=k·120º+20º,k∈Z.当k=0时,得角为20º,当k=1时,得角为140º,当k=2时,得角为260º.

相关文档