- 750.50 KB
- 2022-08-08 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
1.通常求利润最大、用料最省、效率最高等问题称为__________问题,一般地,对于实际问题,若函数在给定的定义域内只有一个极值点,那么该点也是最值点.优化\n2.生活中的优化问题解决优化问题的基本思路:\n1.函数的极大值一定比极小值大吗?【提示】极值是一个局部概念,极值的大小关系是不确定的,即极大值不一定比极小值大,极小值也不一定比极大值小.\n2.如何求实际问题中的最值问题?【提示】有关函数最大值、最小值的实际问题,一般指的是单峰函数,也就是说在实际问题中,如果遇到函数在区间内只有一个极值点,那么不与区间端点比较,就可以知道这个极值点就是最大(小)值点.\n【解析】∵f′(x)=3ax2+1,依题意f′(x)=3ax2+1有两个实根,∴a<0.【答案】D\n【解析】y′=-x2+81(x>0),令y′=0,即-x2+81=0得x=9,当x∈(0,9)时,y′>0,当x∈(9,+∞)时,y′<0.∴函数在(0,9)上单调递增,在(9,+∞)上单调递减,∴当x=9时,函数取得最大值,故选C.【答案】C\n\n【解析】由y=f′(x)的图象知,函数f(x)在(-∞,0)上单调递增,在(0,+∞)上单调递减,且f(-2)=1,f(3)=1,则不等式f(x2-6)>1可转化为-2<x2-6<3,解得:2<x<3或-3<x<-2,故选A.【答案】A\n4.已知f(x)=1+x-sinx,试比较f(2),f(3),f(π)的大小为________.【解析】f′(x)=1-cosx,当x∈(0,π]时,f′(x)>0.∴f(x)在(0,π]上是增函数,∴f(π)>f(3)>f(2).【答案】f(π)>f(3)>f(2)\n5.(2013·大连模拟)已知函数f(x)=ex-2x+a有零点,则a的取值范围是________.【解析】函数f(x)=ex-2x+a有零点,即方程ex-2x+a=0有实根,即函数g(x)=2x-ex,y=a有交点,而g′(x)=2-ex,易知函数g(x)=2x-ex在(-∞,ln2)上递增,在(ln2,+∞)上递减,因而g(x)=2x-ex的值域为(-∞,2ln2-2],所以要使函数g(x)=2x-ex,y=a有交点,只需a≤2ln2-2即可.【答案】(-∞,2ln2-2]\n(2013·海淀模拟)已知函数f(x)=ex(x2+ax-a),其中a是常数.(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若存在实数k,使得关于x的方程f(x)=k在[0,+∞)上有两个不相等的实数根,求k的取值范围.\n【思路点拨】(1)先求切点、切线斜率,再求切线方程;(2)利用导数判断函数f(x)在[0,+∞)上的变化情况,数形结合求解.【尝试解答】(1)由f(x)=ex(x2+ax-a)可得f′(x)=ex[x2+(a+2)x].当a=1时,f(1)=e,f′(1)=4e.所以曲线y=f(x)在点(1,f(1))处的切线方程为y-e=4e(x-1),即y=4ex-3e.\n(2)令f′(x)=ex[x2+(a+2)x]=0,解得x=-(a+2)或x=0.当-(a+2)≤0,即a≥-2时,在区间[0,+∞)上,f′(x)≥0,所以f(x)是[0,+∞)上的增函数,所以方程f(x)=k在[0,+∞)上不可能有两个不相等的实数根.当-(a+2)>0,即a<-2时,f′(x),f(x)随x的变化情况如下表:\n\n\n1.在解答本题(2)时应判断f(x)>f(0)是否成立,这是容易忽视的地方.2.该类问题的求解,一般利用导数研究函数的单调性、极值等性质,并借助函数图象,根据零点或图象的交点情况,建立含参数的方程(或不等式)组求解,实现形与数的和谐统一.\n\n当x变化时,f′(x)与f(x)的变化情况如下表:\n\n\n(2013·大连模拟)设a为实数,函数f(x)=ex-2x+2a,x∈R.(1)求f(x)的单调区间与极值;(2)求证:当a>ln2-1且x>0时,ex>x2-2ax+1.【思路点拨】(1)令f′(x)=0,求极值点,然后讨论在各个区间上的单调性.(2)构造函数g(x)=ex-x2+2ax-1(x∈R),注意到g(0)=0,只需证明g(x)在(0,+∞)上是增函数,可利用导数求解.\n【尝试解答】(1)由f(x)=ex-2x+2a,x∈R,f′(x)=ex-2,x∈R.令f′(x)=0,得x=ln2.于是当x变化时,f′(x),f(x)的变化情况如下表:故f(x)的单调递减区间是(-∞,ln2),单调递增区间是(ln2,+∞),f(x)在x=ln2处取得极小值,极小值为f(ln2)=eln2-2ln2+2a=2(1-ln2+a).\n(2)设g(x)=ex-x2+2ax-1,x∈R.于是g′(x)=ex-2x+2a,x∈R.由(1)知当a>ln2-1时,g′(x)最小值为g′(ln2)=2(1-ln2+a)>0.于是对任意x∈R,都有g′(x)>0,所以g(x)在R内单调递增.于是当a>ln2-1时,对任意x∈(0,+∞),都有g(x)>g(0).又g(0)=0,从而对任意x∈(0,+∞),g(x)>0.即ex-x2+2ax-1>0,故ex>x2-2ax+1.\n1.本题常见的错误有两点:(1)基础知识不过关,求错导数;(2)不等式证明思路不清晰,不会构造函数g(x),发现不了g′(x)与f(x)的关系,导致不能运用第(1)问的结论.2.对于该类问题,可从不等式的结构特点出发,构造函数,借助导数确定函数的性质,借助单调性或最值实现转化.\n(2013·杭州模拟)设函数f(x)=a2lnx-x2+ax,a>0.(1)求f(x)的单调区间;(2)求所有的实数a,使e-1≤f(x)≤e2对x∈[1,e]恒成立.(其中,e为自然对数的底数).\n\n(2013·南京模拟)请你设计一个包装盒.如图2-12-2所示,ABCD是边长为60cm的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A,B,C,D四个点重合于图中的点P,正好形成一个正四棱柱形状的包装盒.E、F在AB上,是被切去的一个等腰直角三角形斜边的两个端点.设AE=FB=x(cm).\n(1)若广告商要求包装盒的侧面积S(cm2)最大,试问x应取何值?(2)某厂商要求包装盒的容积V(cm3)最大,试问x应取何值?并求出此时包装盒的高与底面边长的比值.【思路点拨】用x表示包装盒的高度和底面边长,则(1)包装盒的侧面积S是关于x的二次函数,可通过配方求最值;(2)包装盒的容积V是关于x的三次函数,可通过导数求最大值.\n\n利用导数解决生活中优化问题的一般步骤(1)分析实际问题中各量之间的关系,构造出实际问题的数学模型,写出实际问题中变量之间的函数关系y=f(x),并根据实际意义确定定义域;(2)求函数y=f(x)的导数f′(x),解方程f′(x)=0得出定义域内的实根,确定极值点;(3)比较函数在区间端点和极值点处的函数值大小,获得所求的最大(小)值;(4)还原到实际问题中作答.\n\n\n\n把所求问题通过构造函数,转化为可用导数解决的问题,这是用导数解决问题时常用的方法.利用导数解决与方程、函数零点、不等式等问题时,常用到数形结合及转化与化归的数学思想.\n1.注意实际问题中函数定义域的确定.2.在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定是最大值还是最小值即可,不必再与端点的函数值比较.\n从近两年高考试题看,导数与方程、函数零点、不等式的交汇综合,以及利用导数研究生活中的优化问题,是考查的热点,并且常考常新.题型以解答题为主,综合考查学生分析问题、解决问题的能力.\n规范解答之三 构建函数模型证明不等式恒成立问题\n\n\n\n【解题程序】第一步:利用导数的几何意义求k的值;第二步:求f′(x),构造函数h(x);第三步:通过判断h(x)的正负,得到f′(x)的正负,从而求出单调区间;第四步:写出g(x),判断h(x)在(0,+∞)上的单调性;第五步:求出h(x)的最大值,从而得到欲证明的不等式.\n易错提示:(1)解答第(2)题时,因无法解方程f′(x)=0,从而导致无法求解.(2)求解第(3)题时,因不会构造函数而导致解题失误.防范措施:(1)当方程f′(x)=0无法用常规方法求解时,可用“试算”的方法寻找方程的根.(2)在用导数证明不等式时,若构造的函数比较复杂(求导后无法确定极值点),可把函数写成两项积的形式(其中一个因式符号确定,另一个因式符号不定),进而讨论符号不定的因式.\n1.(2012·福建高考)已知f(x)=x3-6x2+9x-abc,a0;②f(0)f(1)<0;③f(0)f(3)>0;④f(0)f(3)<0.其中正确结论的序号是( )A.①③ B.①④ C.②③ D.②④\n【解析】∵f′(x)=3x2-12x+9=3(x-1)(x-3),由f′(x)<0,得10,得x<1或x>3,∴f(x)在区间(1,3)上是减函数,在区间(-∞,1),(3,+∞)上是增函数.又a0,y极小值=f(3)=-abc<0,∴00.又x=1,x=3为函数f(x)的极值点,后一种情况不可能成立,如图.∴f(0)<0,∴f(0)f(1)<0,f(0)f(3)>0,∴正确结论的序号是②③.【答案】C\n\n\n课后作业(十五)\n