- 1.35 MB
- 2022-08-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第二十四章圆单元要点分析教学内容1.本单元数学的主要内容.〔1〕圆有关的概念:垂直于弦的直径,弧、弦、圆心角、圆周角.〔2〕与圆有关的位置关系:点和圆的位置关系,直线与圆的位置关系,圆和圆的位置关系.〔3〕正多边形和圆.〔4〕弧长和扇形面积:弧长和扇形面积,圆锥的侧面积和全面积.2.本单元在教材中的地位与作用.学生在学习本章之前,已通过折叠、对称、平移旋转、推理证明等方式认识了许多图形的性质,积累了大量的空间与图形的经验.本章是在学习了直线型图形的有关性质的根底上,进一步来探索一种特殊的曲线──圆的有关性质.通过本章的学习,对学生今后继续学习数学,尤其是逐步树立分类讨论的数学思想、归纳的数学思想起着良好的铺垫作用.本章的学习是高中的数学学习,尤其是圆锥曲线的学习的根底性工程.教学目标1.知识与技能〔1〕了解圆的有关概念,探索并理解垂径定理,探索并认识圆心角、弧、弦之间的相等关系的定理,探索并理解圆周角和圆心角的关系定理.〔2〕探索并理解点和圆、直线与圆以与圆与圆的位置关系:了解切线的概念,探索切线与过切点的直径之间的关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线.〔3〕进一步认识和理解正多边形和圆的关系和正多边的有关计算.〔4〕熟练掌握弧长和扇形面积公式与其它们的应用;理解圆锥的侧面展开图并熟练掌握圆锥的侧面积和全面积的计算.2.过程与方法〔1〕积极引导学生从事观察、测量、平移、旋转、推理证明等活动.了解概念,理解等量关系,掌握定理与公式.〔2〕在教学过程中,鼓励学生动手、动口、动脑,并进展同伴之间的交流.〔3〕在探索圆周角和圆心角之间的关系的过程中,让学生形成分类讨论的数学思想和归纳的数学思想.〔4〕通过平移、旋转等方式,认识直线与圆、圆与圆的位置关系,使学生明确图形在运动变化中的特点和规律,进一步开展学生的推理能力.〔5〕探索弧长、扇形的面积、圆锥的侧面积和全面积的计算公式并理解公式的意义、理解算法的意义.3.情感、态度与价值观经历探索圆与其相关结论的过程,开展学生的数学思考能力;通过积极引导,帮助学生有意识地积累活动经验,获得成功的体验;利用现实生活和数学中的素材,设计具有挑战性的情景,激发学生求知、探索的欲望.教学重点1.平分弦〔不是直径〕的直径垂直于弦,并且平分弦所对的两条弧与其运用.2.在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等与其运用.\n3.在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半与其运用.4.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径与其运用.5.不在同一直线上的三个点确定一个圆.6.直线L和⊙O相交dr与其运用.7.圆的切线垂直于过切点的半径与其运用.8.经过半径的外端并且垂直于这条半径的直线是圆的切线并利用它解决一些具体问题.9.从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角与其运用.10.两圆的位置关系:d与r1和r2之间的关系:外离d>r1+r2;外切d=r1+r2;相交│r2-r1│AD(1)(2)(3)2.如图2,⊙O的直径为10,圆心O到弦AB的距离OM的长为3,如此弦AB的长是〔〕A.4B.6C.7D.83.如图3,在⊙O中,P是弦AB的中点,CD是过点P的直径,如此如下结论中不正确的答案是〔〕\nA.AB⊥CDB.∠AOB=4∠ACDC.D.PO=PD二、填空题1.如图4,AB为⊙O直径,E是中点,OE交BC于点D,BD=3,AB=10,如此AC=_____.(4)(5)2.P为⊙O内一点,OP=3cm,⊙O半径为5cm,如此经过P点的最短弦长为________;最长弦长为_______.3.如图5,OE、OF分别为⊙O的弦AB、CD的弦心距,如果OE=OF,那么_______〔只需写一个正确的结论〕三、综合提高题1.如图24-11,AB为⊙O的直径,CD为弦,过C、D分别作⊥CD、DM⊥CD,分别交AB于N、M,请问图中的AN与BM是否相等,说明理由.2.如图,⊙O直径AB和弦CD相交于点E,AE=2,EB=6,∠DEB=30°,求弦CD长.3.〔开放题〕AB是⊙O的直径,AC、AD是⊙O的两弦,AB=16,AC=8,AD=8,求∠DAC的度数.上课时间:课题24.1圆(第2课时)\n目 标〔三维目标〕了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,与其它们在解题中的应用.通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题.重点难点1.重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等与其两个推论和它们的应用.2.难点与关键:探索定理和推导与其应用.讲授法演示法读书指导法学法特征联系法点拨指导法教学过程:〔详案〕讨论修改一、复习引入〔学生活动〕请同学们完成下题.△OAB,如下列图,作出绕O点旋转30°、45°、60°的图形.教师点评:绕O点旋转,O点就是固定点,旋转30°,就是旋转角∠BOB′=30°.二、探索新知如下列图,∠AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角.〔学生活动〕请同学们按如下要求作图并回答如下问题:如下列图的⊙O中,分别作相等的圆心角∠AOB和∠A′OB′将圆心角∠AOB绕圆心O旋转到∠A′OB′的位置,你能发现哪些等量关系?为?\n=,AB=A′B′理由:∵半径OA与O′A′重合,且∠AOB=∠A′OB′∴半径OB与OB′重合∵点A与点A′重合,点B与点B′重合∴与重合,弦AB与弦A′B′重合∴=,AB=A′B′因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等.在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作.〔学生活动〕教师点评:如图1,在⊙O和⊙O′中,分别作相等的圆心角∠AOB和∠A′O′B′得到如图2,滚动一个圆,使O与O′重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与O′A′重合.(1)(2)你能发现哪些等量关系?说一说你的理由?我能发现:=,AB=A/B/.现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢──化归思想,化未知为,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等.同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等.在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等.〔学生活动〕请同学们现在给予说明一下.请三位同学到黑板板书,教师点评.例1.如图,在⊙O中,AB、CD是两条弦,OE⊥AB,OF⊥CD,垂足分别为EF.〔1〕如果∠AOB=∠COD,那么OE与OF的大小有关系?为?〔2〕如果OE=OF,那么与\n的大小有关系?AB与CD的大小有关系?为?∠AOB与∠COD呢?分析:〔1〕要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可.〔2〕∵OE=OF,∴在Rt△AOE和Rt△COF中,又有AO=CO是半径,∴Rt△AOE≌Rt△COF,∴AE=CF,∴AB=CD,又可运用上面的定理得到=解:〔1〕如果∠AOB=∠COD,那么OE=OF理由是:∵∠AOB=∠COD∴AB=CD∵OE⊥AB,OF⊥CD∴AE=AB,CF=CD∴AE=CF又∵OA=OC∴Rt△OAE≌Rt△OCF∴OE=OF〔2〕如果OE=OF,那么AB=CD,=,∠AOB=∠COD理由是:∵OA=OC,OE=OF∴Rt△OAE≌Rt△OCF∴AE=CF又∵OE⊥AB,OF⊥CD∴AE=AB,CF=CD∴AB=2AE,CD=2CF∴AB=CD∴=,∠AOB=∠COD三、巩固练习教材P89练习1教材P90练习2.四、应用拓展例2.如图3和图4,MN是⊙O的直径,弦AB、CD相交于MN上的一点P,∠APM=∠CPM.〔1〕由以上条件,你认为AB和CD大小关系是,请说明理由.〔2〕假如交点P在⊙O的外部,上述结论是否成立?假如成立,加以证明;假如不成立,请说明理由.\n(3)(4)分析:〔1〕要说明AB=CD,只要证明AB、CD所对的圆心角相等,只要说明它们的一半相等.上述结论仍然成立,它的证明思路与上面的题目是一模一样的.解:〔1〕AB=CD理由:过O作OE、OF分别垂直于AB、CD,垂足分别为E、F∵∠APM=∠CPM∴∠1=∠2OE=OF连结OD、OB且OB=OD∴Rt△OFD≌Rt△OEB∴DF=BE根据垂径定理可得:AB=CD〔2〕作OE⊥AB,OF⊥CD,垂足为E、F∵∠APM=∠CPN且OP=OP,∠PEO=∠PFO=90°∴Rt△OPE≌Rt△OPF∴OE=OF连接OA、OB、OC、OD易证Rt△OBE≌Rt△ODF,Rt△OAE≌Rt△OCF∴∠1+∠2=∠3+∠4∴AB=CD五、归纳总结〔学生归纳,教师点评〕本节课应掌握:1.圆心角概念.2.在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都局部相等,与其它们的应用.六、布置作业1.教材P94-95复习巩固4、5、6、7、8.2.选用课时作业设计.第二课时作业设计一、选择题.1.如果两个圆心角相等,那么〔〕A.这两个圆心角所对的弦相等;B.这两个圆心角所对的弧相等C.这两个圆心角所对的弦的弦心距相等;D.以上说法都不对2.在同圆中,圆心角∠AOB=2∠COD,如此两条弧AB与CD关系是〔〕\nA.=2B.>C.<2D.不能确定3.如图5,⊙O中,如果=2,那么〔〕.A.AB=ACB.AB=ACC.AB<2ACD.AB>2AC(5)(6)二、填空题1.交通工具上的轮子都是做圆的,这是运用了圆的性质中的_________.2.一条弦长恰好为半径长,如此此弦所对的弧是半圆的_________.3.如图6,AB和DE是⊙O的直径,弦AC∥DE,假如弦BE=3,如此弦CE=________.三、解答题1.如图,在⊙O中,C、D是直径AB上两点,且AC=BD,MC⊥AB,ND⊥AB,M、N在⊙O上.〔1〕求证:=;〔2〕假如C、D分别为OA、OB中点,如此成立?2.如图,以ABCD的顶点A为圆心,AB为半径作圆,分别交BC、AD于E、F,假如∠D=50°,求的度数和的度数.3.如图,∠AOB=90°,C、D是AB三等分点,AB分别交OC、OD于点E、F,求证:AE=BF=CD.\n上课时间:课题24.1圆(第3课时)目 标〔三维目标〕1.了解圆周角的概念.2.理解圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3.理解圆周角定理的推论:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径.4.熟练掌握圆周角的定理与其推理的灵活运用.设置情景,给出圆周角概念,探究圆周角与圆心角的关系,运用数学分类思想给予逻辑证明定理,得出推导,让学生活动证明定理推论的正确性,最后运用定理与其推导解决一些实际问题.重点难点1.重点:圆周角的定理、圆周角的定理的推导与运用它们解题.2.难点:运用数学分类思想证明圆周角的定理.3.关键:探究圆周角的定理的存在.讲授法演示法读书指导法学法理解记忆法理清思路法教学过程:〔详案〕讨论修改\n一、复习引入〔学生活动〕请同学们口答下面两个问题.1.叫圆心角?2.圆心角、弦、弧之间有内在联系呢?教师点评:〔1〕我们把顶点在圆心的角叫圆心角.〔2〕在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对的其余各组量都分别相等.刚刚讲的,顶点在圆心上的角,有一组等量的关系,如果顶点不在圆心上,它在其它的位置上?如在圆周上,是否还存在一些等量关系呢?这就是我们今天要探讨,要研究,要解决的问题.二、探索新知问题:如下列图的⊙O,我们在射门游戏中,设E、F是球门,设球员们只能在所在的⊙O其它位置射门,如下列图的A、B、C点.通过观察,我们可以发现像∠EAF、∠EBF、∠ECF这样的角,它们的顶点在圆上,并且两边都与圆相交的角叫做圆周角.现在通过圆周角的概念和度量的方法回答下面的问题.1.一个弧上所对的圆周角的个数有多少个?2.同弧所对的圆周角的度数是否发生变化?3.同弧上的圆周角与圆心角有关系?〔学生分组讨论〕提问二、三位同学代表发言.教师点评:1.一个弧上所对的圆周角的个数有无数多个.2.通过度量,我们可以发现,同弧所对的圆周角是没有变化的.3.通过度量,我们可以得出,同弧上的圆周角是圆心角的一半.下面,我们通过逻辑证明来说明“同弧所对的圆周角的度数没有变化,并且它的度数恰好等于这条弧所对的圆心角的度数的一半.〞〔1〕设圆周角∠ABC的一边BC是⊙O的直径,如下列图∵∠AOC是△ABO的外角∴∠AOC=∠ABO+∠BAO∵OA=OB∴∠ABO=∠BAO∴∠AOC=∠ABO∴∠ABC=∠AOC〔2〕如图,圆周角∠ABC的两边AB、AC在一条直径OD的两侧,那么∠ABC=∠AOC?请同学们独立完成这道题的说明过程.教师点评:连结BO交⊙O于D同理∠AOD是△ABO的外角,∠COD是△BOC的外角,那么就有∠AOD=2∠ABO,∠DOC=2∠CBO,因此∠AOC=2∠ABC.〔3〕如图,圆周角∠\nABC的两边AB、AC在一条直径OD的同侧,那么∠ABC=∠AOC?请同学们独立完成证明.教师点评:连结OA、OC,连结BO并延长交⊙O于D,那么∠AOD=2∠ABD,∠COD=2∠CBO,而∠ABC=∠ABD-∠CBO=∠AOD-∠COD=∠AOC现在,我如果在画一个任意的圆周角∠AB′C,同样可证得它等于同弧上圆心角一半,因此,同弧上的圆周角是相等的.从〔1〕、〔2〕、〔3〕,我们可以总结归纳出圆周角定理:在同圆或等圆中,同弧等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.进一步,我们还可以得到下面的推导:半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径.下面,我们通过这个定理和推论来解一些题目.例1.如图,AB是⊙O的直径,BD是⊙O的弦,延长BD到C,使AC=AB,BD与CD的大小有关系?为?分析:BD=CD,因为AB=AC,所以这个△ABC是等腰,要证明D是BC的中点,只要连结AD证明AD是高或是∠BAC的平分线即可.解:BD=CD理由是:如图24-30,连接AD∵AB是⊙O的直径∴∠ADB=90°即AD⊥BC又∵AC=AB∴BD=CD三、巩固练习1.教材P92思考题.2.教材P93练习.四、应用拓展例2.如图,△ABC内接于⊙O,∠A、∠B、∠C的对边分别设为a,b,c,⊙O半径为R,求证:===2R.分析:要证明===2R,只要证明=2R,=2R,=2R,即sinA=,sinB=,sinC=,因此,十清楚显要在直角三角形中进展.证明:连接CO并延长交⊙O于D,连接DB∵CD是直径∴∠DBC=90°又∵∠A=∠D在Rt△DBC中,sinD=,即2R=同理可证:=2R,=2R\n∴===2R五、归纳小结〔学生归纳,教师点评〕本节课应掌握:1.圆周角的概念;2.圆周角的定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都相等这条弧所对的圆心角的一半;3.半圆〔或直径〕所对的圆周角是直角,90°的圆周角所对的弦是直径.4.应用圆周角的定理与其推导解决一些具体问题.六、布置作业1.教材P95综合运用9、10、11拓广探索12、13.2.选用课时作业设计.上课时间:课题24.2与圆有关的位置关系(第1课时)目 标〔三维目标〕1.理解并掌握设⊙O的半径为r,点P到圆心的距离OP=d,如此有:点P在圆外d>r;点P在圆上d=r;点P在圆内dr点P在圆上d=r点P在圆内dr点P在圆外;如果d=r点P在圆上;如果dr点P在圆上d=r点P在圆内dr.〔3〕理解切线的判定定理:理解切线的性质定理并熟练掌握以上内容解决一些实际问题.复习点和圆的位置关系,引入直线和圆的位置关系,以直线和圆的位置关系中的d=r直线和圆相切,讲授切线的判定定理和性质定理.重点难点1.重点:切线的判定定理;切线的性质定理与其运用它们解决一些具体的题目.2.难点与关键:由上节课点和圆的位置关系迁移并运动直线导出直线和圆的位置关系的三个对应等价.讲授法演示法作业法学法提示指导法示X指导法\n教学过程:〔详案〕讨论修改一、复习引入〔教师口答,学生口答,教师并在黑板上板书〕同学们,我们前一节课已经学到点和圆的位置关系.设⊙O的半径为r,点P到圆心的距离OP=d,如此有:点P在圆外d>r,如图〔a〕所示;点P在圆上d=r,如图〔b〕所示;点P在圆内dr,如图〔c〕所示.因为d=r直线L和⊙O相切,这里的d是圆心O到直线L的距离,即垂直,并由d=r就可得到L经过半径r的外端,即半径OA的A点,因此,很明显的,我们可以得到切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.〔学生分组讨论〕:根据上面的判定定理,如果你要证明一条直线是⊙O的切线,你应该如何证明?〔教师点评〕:应分为两步:〔1〕说明这个点是圆上的点,〔2〕过这点的半径垂直于直线.例1.如图,Rt△ABC的斜边AB=8cm,AC=4cm.〔1〕以点C为圆心作圆,当半径为多长时,直线AB与⊙C相切?为?〔2〕以点C为圆心,分别以2cm和4cm为半径作两个圆,这两个圆与直线AB分别有怎样的位置关系?分析:〔1〕根据切线的判定定理可知,要使直线AB与⊙C相切,那么这条半径应垂直于直线AB,并且C点到垂足的长就是半径,所以只要求出如下列图的CD即可.〔2〕用d和r的关系进展判定,或借助图形进展判定.解:〔1〕如图24-54:过C作CD⊥AB,垂足为D.在Rt△ABC中BC==∴CD==2因此,当半径为2cm时,AB与⊙C相切.理由是:直线AB为⊙C的半径CD的外端并且CD⊥AB,所以AB是⊙C的切线.〔2〕由〔1〕可知,圆心C到直线AB的距离d=2cm,所以当r=2时,d>r,⊙C与直线AB相离;当r=4时,dr3.切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线.\n4.切线的性质定理,圆的切线垂直于过切点的半径.5.应用上面的知识解决实际问题.六、布置作业1.教材P110复习巩固4、5.2.选用课时作业设计.第二课时作业设计一、选择题.1.如图,AB与⊙O切于点C,OA=OB,假如⊙O的直径为8cm,AB=10cm,那么OA的长是〔〕A.B.2.如下说法正确的答案是〔〕A.与圆有公共点的直线是圆的切线.B.和圆心距离等于圆的半径的直线是圆的切线;C.垂直于圆的半径的直线是圆的切线;D.过圆的半径的外端的直线是圆的切线3.⊙O分别与△ABC的BC边,AB的延长线,AC的延长线相切,如此∠BOC等于〔〕A.〔∠B+∠C〕B.90°+∠AC.90°-∠AD.180°-∠A二、填空题1.如图,AB为⊙O直径,BD切⊙O于B点,弦AC的延长线与BD交于D点,假如AB=10,AC=8,如此DC长为________.2.如图,P为⊙O外一点,PA、PB为⊙O的切线,A、B为切点,弦AB与PO交于C,⊙O半径为1,PO=2,如此PA_______,PB=________,PC=_______AC=______,BC=______∠AOB=________.3.设I是△ABC的内心,O是△ABC的外心,∠A=80°,如此∠BIC=________,∠BOC=________.三、综合提高题1.如图,P为⊙O外一点,PA切⊙O于点A,过点P的任一直线交⊙O于B、C,连结AB、AC,连PO交⊙O于D、E.〔1〕求证:∠PAB=∠C.〔2〕如果PA2=PD·PE,那么当PA=2,PD=1时,求⊙O的半径.\n2.设a、b、c分别为△ABC中∠A、∠B、∠C的对边,面积为S,如此内切圆半径r=,其中P=〔a+b+c〕;〔2〕Rt△ABC中,∠C=90°,如此r=〔a+b-c〕3.如图1,平面直角坐标系中,⊙O1与x轴相切于点A〔-2,0〕,与y轴交于B、C两点,O1B的延长线交x轴于点D〔,0〕,连结AB.〔1〕求证:∠ABO=∠ABO;〔2〕设E为优弧的中点,连结AC、BE交于点F,请你探求BE·BF的值.〔3〕如图2,过A、B两点作⊙O2与y轴的正半轴交于点M,与BD的延长线交于点N,当⊙O2的大小变化时,给出如下两个结论.①BM-BN的值不变;②BM+BN的值不变,其中有且只有一个结论是正确的,请你判断哪一个结论正确,证明正确的结论并求出其值.〔友情提示:如图3,如果DE∥BC,那么〕(1)(2)\n上课时间:课题24.2与圆有关的位置关系(第3课时)目 标〔三维目标〕了解切线长的概念.理解切线长定理,了解三角形的内切圆和三角形的内心的概念,熟练掌握它的应用.复习圆与直线的位置关系和切线的判定定理、性质定理知识迁移到切长线的概念和切线长定理,然后根据所学三角形角平分线的性质给出三角形的内切圆和三角形的内心概念,最后应用它们解决一些实际问题.重点难点1.重点:切线长定理与其运用.2.难点与关键:切线长定理的导出与其证明和运用切线长定理解决一些实际问题.讲授法演示法读书指导法学法归纳指导启迪思维法教学过程:〔详案〕讨论修改\n一、复习引入1.△ABC,作三个内角平分线,说说它具有性质?2.点和圆有几种位置关系?你能说说在这一节中应掌握几个方面的知识?3.直线和圆有位置关系?切线的判定定理和性质定理,它们如何?教师点评:〔1〕在黑板上作出△ABC的三条角平分线,并口述其性质:①三条角平分线相交于一点;②交点到三条边的距离相等.〔2〕〔口述〕点和圆的位置关系有三种,点在圆内dr;不在同一直线上的三个点确定一个圆;反证法的思想.〔3〕〔口述〕直线和圆的位置关系同样有三种:直线L和⊙O相交dr;切线的判定定理:经过半径的外端并且垂直于半径的直线是圆的切线;切线的性质定理:圆的切线垂直于过切点的半径.二、探索新知从上面的复习,我们可以知道,过⊙O上任一点A都可以作一条切线,并且只有一条,根据下面提出的问题操作思考并解决这个问题.问题:在你手中的纸上画出⊙O,并画出过A点的唯一切线PA,连结PO,沿着直线PO将纸对折,设圆上与点A重合的点为B,这时,OB是⊙O的一条半径?PB是⊙O的切线?利用图形的轴对称性,说明圆中的PA与PB,∠APO与∠BPO有关系?学生分组讨论,教师抽取3~4位同学回答这个问题.教师点评:OB与OA重叠,OA是半径,OB也就是半径了.又因为OB是半径,PB为OB的外端,又根据折叠后的角不变,所以PB是⊙O的又一条切线,根据轴对称性质,我们很容易得到PA=PB,∠APO=∠BPO.我们把PA或PB的长,即经过圆外一点作圆的切线,这点和切点之间的线段的长,叫做这点到圆的切线长.从上面的操作几何我们可以得到:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.下面,我们给予逻辑证明.例1.如图,PA、PB是⊙O的两条切线.求证:PA=PB,∠OPA=∠OPB.证明:∵PA、PB是⊙O的两条切线.∴OA⊥AP,OB⊥BP又OA=OB,OP=OP,∴Rt△AOP≌Rt△BOP∴PA=PB,∠OPA=∠OPB因此,我们得到切线长定理:从圆外一点可以引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.我们刚刚已经复习,三角形的三条角平分线于一点,并且这个点到三条边的距离相等.\n〔同刚刚画的图〕设交点为I,那么I到AB、AC、BC的距离相等,如下列图,因此以点I为圆心,点I到BC的距离ID为半径作圆,如此⊙I与△ABC的三条边都相切.与三角形各边都相切的圆叫做三角形的内切圆,内切圆的圆心是三角形三条角平分线的交点,叫做三角形的内心.例2.如图,⊙O是△ABC的内切圆,切点为D、E、F,如果AE=1,CD=2,BF=3,且△ABC的面积为6.求内切圆的半径r.分析:直接求内切圆的半径有困难,由于面积是的,因此要转化为面积法来求.就需添加辅助线,如果连结AO、BO、CO,就可把三角形ABC分为三块,那么就可解决.解:连结AO、BO、CO∵⊙O是△ABC的内切圆且D、E、F是切点.∴AF=AE=1,BD=BF=3,CE=CD=2∴AB=4,BC=5,AC=3又∵S△ABC=6∴〔4+5+3〕r=6∴r=1答:所求的内切圆的半径为1.
三、巩固练习教材P106练习.四、应用拓展例3.如图,⊙O的直径AB=12cm,AM、BN是两条切线,DC切⊙O于E,交AM于D,交BN于C,设AD=x,BC=y.〔1〕求y与x的函数关系式,并说明是函数?〔2〕假如x、y是方程2t2-30t+m=0的两根,求x,y的值.〔3〕求△COD的面积.分析:〔1〕要求y与x的函数关系,就是求BC与AD的关系,根据切线长定理:DE=AD=x,CE=CB=y,即DC=x+y,又因为AB=12,所以只要作DF⊥BC垂足为F,根据勾股定理,便可求得.〔2〕∵x,y是2t2-30t+m=0的两根,那么x1+x2=,x1x2=,便可求得x、y的值.〔3〕连结OE,便可求得.解:〔1〕过点D作DF⊥BC,垂足为F,如此四边形ABFD为矩形.\n∵⊙O切AM、BN、CD于A、B、E∴DE=AD,CE=CB∵AD=x,CB=y∴CF=y-x,CD=x+y在Rt△DCF中,DC2=DF2+CF2即〔x+y〕2=〔x-y〕2+122∴xy=36∴y=为反比例函数;〔2〕由x、y是方程2t-30t+m=0的两根,可得:x+y==15同理可得:xy=36∴x=3,y=12或x=12,y=3.〔3〕连结OE,如此OE⊥CD∴S△COD=CD·OE=×〔AD+BC〕·AB=×15××12=45cm2五、归纳小结〔学生归纳,教师点评〕本节课应掌握:1.圆的切线长概念;2.切线长定理;3.三角形的内切圆与内心的概念.六、布置作业1.教材P117综合运用5、6、7、8.2.选用课时作业设计.第三课时作业设计一、选择题.1.如图1,PA、PB分别切圆O于A、B两点,C为劣弧AB上一点,∠APB=30°,如此∠ACB=〔〕.A.60°B.75°C.105°D.120°\n(1)(2)(3)(4)2.从圆外一点向半径为9的圆作切线,切线长为18,从这点到圆的最短距离为〔〕.A.9B.9〔-1〕C.9〔-1〕D.93.圆外一点P,PA、PB分别切⊙O于A、B,C为优弧AB上一点,假如∠ACB=a,如此∠APB=〔〕A.180°-aB.90°-aC.90°+aD.180°-2a二、填空题1.如图2,PA、PB分别切圆O于A、B,并与圆O的切线,分别相交于C、D,PA=7cm,如此△PCD的周长等于_________.2.如图3,边长为a的正三角形的内切圆半径是_________.3.如图4,圆O内切Rt△ABC,切点分别是D、E、F,如此四边形OECF是_______.三、综合提高题1.如下列图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,求∠A的度数.上课时间:课题24.2与圆有关的位置关系(第4课时)目 标〔三维目标〕了解两个圆相离〔外离、内含〕,两个圆相切〔外切、内切〕,两圆相交、圆心距等概念.理解两圆的互解关系与d、r1、r2等量关系的等价条件并灵活应用它们解题.通知复习直线和圆的位置关系和结合操作几何,迁移到圆与圆之间的五种关系并运用它们解决一些具体的题目.重点难点1.重点:两个圆的五种位置关系中的等价条件与它们的运用.2.难点与关键:探索两个圆之间的五种关系的等价条件与应用它们解题.讲授法演示法读书指导法学法理清思路法交流合作法\n教学过程:〔详案〕讨论修改上课时间:课题24.3正多边形和圆目 标〔三维目标〕了解正多边形和圆的有关概念;理解并掌握正多边形半径和边长、边心距、中心角之间的关系,会应用多边形和圆的有关知识画多边形.复习正多边形概念,让学生尽可能讲出生活中的多边形为引题引入正多边形和圆这一节间的内容.重点难点1.重点:讲清正多边形和圆中心正多边形半径、中心角、弦心距、边长之间的关系.2.难点与关键:通过例题使学生理解四者:正多边形半径、中心角、弦心距、边长之间的关系.讲授法演示法读书指导法学法特征联系法揭示规律法教学过程:〔详案〕讨论修改\n上课时间:课题24.4弧长和扇形面积(第1课时)目 标〔三维目标〕了解扇形的概念,理解n°的圆心角所对的弧长和扇形面积的计算公式并熟练掌握它们的应用.通过复习圆的周长、圆的面积公式,探索n°的圆心角所对的弧长L=和扇形面积S扇=的计算公式,并应用公式解决一些题目.重点难点1.重点:n°的圆心角所对的弧长L=,扇形面积S扇=与其它们的应用.2.难点:两个公式的应用.3.关键:由圆的周长和面积迁移到弧长和扇形面积公式的过程讲授法演示法读书指导法学法讲授指导法归纳指导法\n一、复习引入〔教师口问,学生口答〕请同学们回答如下问题.1.圆的周长公式是?2.圆的面积公式是?3.叫弧长?教师点评:〔1〕圆的周长C=2R〔2〕圆的面积S图=R2〔3〕弧长就是圆的一局部.二、探索新知〔小黑板〕请同学们独立完成下题:设圆的半径为R,如此:1.圆的周长可以看作______度的圆心角所对的弧.2.1°的圆心角所对的弧长是_______.3.2°的圆心角所对的弧长是_______.4.4°的圆心角所对的弧长是_______.……5.n°的圆心角所对的弧长是_______.〔教师点评〕根据同学们的解题过程,我们可得到:n°的圆心角所对的弧长为例1制作弯形管道时,需要先按中心线计算“展直长度〞再下料,试计算如下列图的管道的展直长度,即的长〔结果准确到0.1mm〕分析:要求的弧长,圆心角知,半径知,只要代入弧长公式即可.解:R=40mm,n=110∴的长==≈76.8〔mm〕因此,管道的展直长度约为76.8mm.问题:〔学生分组讨论〕在一块空旷的草地上有一根柱子,柱子上拴着一条长5m的绳子,绳子的另一端拴着一头牛,如下列图:〔1〕这头牛吃草的最大活动区域有多大?〔2〕如果这头牛只能绕柱子转过n°角,那么它的最大活动区域有多大?\n学生提问后,教师点评:〔1〕这头牛吃草的最大活动区域是一个以A〔柱子〕为圆心,5m为半径的圆的面积.〔2〕如果这头牛只能绕柱子转过n°角,那么它的最大活动区域应该是n°圆心角的两个半径的n°圆心角所对的弧所围成的圆的一局部的图形,如图:像这样,由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形.〔小黑板〕,请同学们结合圆心面积S=R2的公式,独立完成下题:1.该图的面积可以看作是_______度的圆心角所对的扇形的面积.2.设圆的半径为R,1°的圆心角所对的扇形面积S扇形=_______.3.设圆的半径为R,2°的圆心角所对的扇形面积S扇形=_______.4.设圆的半径为R,5°的圆心角所对的扇形面积S扇形=_______.……5.设圆半径为R,n°的圆心角所对的扇形面积S扇形=_______.教师检察学生练习情况并点评1.3602.S扇形=R23.S扇形=R24.S扇形=5.S扇形=因此:在半径为R的圆中,圆心角n°的扇形S扇形=例2.如图,扇形AOB的半径为10,∠AOB=60°,求的长〔结果准确到0.1〕和扇形AOB的面积结果准确到0.1〕分析:要求弧长和扇形面积,只要有圆心角,半径的量便可求,此题已满足.解:的长=×10=≈10.5S扇形=×102=≈52.3因此,的长为25.1cm,扇形AOB的面积为150.7cm2.\n三、巩固练习课本P122练习.四、应用拓展例3.〔1〕操作与证明:如下列图,O是边长为a的正方形ABCD的中心,将一块半径足够长,圆心角为直角的扇形纸板的圆心放在O处,并将纸板绕O点旋转,求证:正方形ABCD的边被纸板覆盖局部的总长度为定值a.〔2〕尝试与思考:如图a、b所示,将一块半径足够长的扇形纸板的圆心角放在边长为a的正三角形或边长为a的正五边形的中心点处,并将纸板绕O旋转,,当扇形纸板的圆心角为________时,正三角形边被纸覆盖局部的总长度为定值a;当扇形纸板的圆心角为_______时,正五边形的边长被纸板覆盖局部的总长度也为定值a.(a)(b)〔3〕探究与引申:一般地,将一块半径足够长的扇形纸板的圆心放在边长为a的正n边形的中心O点处,假如将纸板绕O点旋转,当扇形纸板的圆心角为_______时,正n边形的边被纸板覆盖局部的总长度为定值a,这时正n边形被纸板所覆盖局部的面积是否也为定值?假如为定值,写出它与正n边形面积S之间的关系〔不需证明〕;假如不是定值,请说明理由.解:〔1〕如下列图,不妨设扇形纸板的两边与正方形的边AB、AD分别交于点M、N,连结OA、OD.∵四边形ABCD是正方形∴OA=OD,∠AOD=90°,∠MAO=∠NDO,又∠MON=90°,∠AOM=∠DON∴△AMO≌△DNO∴AM=DN∴AM+AN=DN+AN=AD=a特别地,当点M与点A〔点B〕重合时,点N必与点D〔点A〕重合,此时AM+AN仍为定值a.故总有正方形的边被纸板覆盖局部的总长度为定值a.〔2〕120°;70°〔3〕;正n边形被纸板覆盖局部的面积是定值,这个定值是.五、归纳小结〔学生小结,教师点评〕本节课应掌握:\n1.n°的圆心角所对的弧长L=2.扇形的概念.3.圆心角为n°的扇形面积是S扇形=4.运用以上内容,解决具体问题.六、布置作业1.教材P124复习巩固1、2、3P125综合运用5、6、7.2.选用课时作业设计.第一课时作业设计一、选择题1.扇形的圆心角为120°,半径为6,如此扇形的弧长是〔〕.A.3B.4C.5D.62.如图1所示,把边长为2的正方形ABCD的一边放在定直线L上,按顺时针方向绕点D旋转到如图的位置,如此点B运动到点B′所经过的路线长度为〔〕A.1B.C.D.(1)(2)(3)3.如图2所示,实数局部是半径为9m的两条等弧组成的游泳池,假如每条弧所在的圆都经过另一个圆的圆心,如此游泳池的周长为〔〕A.12mB.18mC.20mD.24m二、填空题1.如果一条弧长等于R,它的半径是R,那么这条弧所对的圆心角度数为______,当圆心角增加30°时,这条弧长增加________.2.如图3所示,OA=30B,如此的长是的长的_____倍.三、综合提高题1.如下列图,所在圆的半径为R,的长为R,⊙O′和OA、OB分别相切于点C、E,且与⊙O内切于点D,求⊙O′的周长.\n2.如图,假如⊙O的周长为20cm,⊙A、⊙B的周长都是4cm,⊙A在⊙O内沿⊙O滚动,⊙B在⊙O外沿⊙O滚动,⊙B转动6周回到原来的位置,而⊙A只需转动4周即可,你能说出其中的道理?3.如下列图,在计算机白色屏幕上,有一矩形着色画刷ABCD,AB=1,AD=,将画刷以B为中心,按顺时针转动A′B′C′D′位置〔A′点转在对角线BD上〕,求屏幕被着色的面积.上课时间:课题24.4弧长和扇形面积(第2课时)目 标〔三维目标〕了解圆锥母线的概念,理解圆锥侧面积计算公式,理解圆锥全面积的计算方法,并会应用公式解决问题.通过设置情景和复习扇形面积的计算方法探索圆锥侧面积和全面积的计算公式以与应用它解决现实生活中的一些实际问题.重点难点1.重点:圆锥侧面积和全面积的计算公式.2.难点:探索两个公式的由来.3.关键:你通过剪母线变成面的过程.讲授法演示法读书指导法练习法学法启迪思维法点拨指导法\n教学过程:〔详案〕讨论修改一、复习引入1.是n°的圆心角所对的弧长和扇形面积的计算公式,并请讲讲它们的异同点.2.问题1:一种太空囊的示意图如下列图,太空囊的外外表须作特别处理,以承受重返地球大气层时与空气摩擦后产生的高热,那么该太空囊要承受防高热处理的面积应由几局部组成的.教师点评:〔1〕n°圆心角所对弧长:L=,S扇形=,公式中没有n°,而是n;弧长公式中是R,分母是180;而扇形面积公式中是R,分母是360,两者要记清,不能混淆.〔2〕太空囊要承受热处理的面积应由三局部组成;圆锥上的侧面积,圆柱的侧面积和底圆的面积.这三局部中,第二局部和第三局部我们已经学过,会求出其面积,但圆锥的侧面积,到目前为止,如何求,我们是无能为力,下面我们来探究它.二、探索新知我们学过圆柱的侧面积是沿着它的母线展开成长方形,同理道理,我们也把连接圆锥顶点和底面圆上任意一点的线段叫做圆锥的母线.〔学生分组讨论,提问二三位同学〕问题2:与圆柱的侧面积求法一样,沿母锥一条母线将圆锥侧面剪开并展平,容易得到,圆锥的侧面展开图是一个扇形,设圆锥的母线长为L,底面圆的半径为r,如图24-115所示,那么这个扇形的半径为________,扇形的弧长为________,因此圆锥的侧面积为________,圆锥的全面积为________.教师点评:很显然,扇形的半径就是圆锥的母线,扇形的弧长就是圆锥底面圆的周长.因此,要求圆锥的侧面积就是求展开图扇形面积S=,其中n可由2r=求得:n=,∴扇形面积S==rL;全面积是由侧面积和底面圆的面积组成的,所以全面积=rL+r2.例1.\n圣诞节将近,某家商店正在制作圣诞节的圆锥形纸帽,纸帽的底面周长为58cm,高为20cm,要制作20顶这样的纸帽至少要用多少平方厘米的纸?〔结果准确到0.1cm2〕分析:要计算制作20顶这样的纸帽至少要用多少平方厘米的纸,只要计算纸帽的侧面积.解:设纸帽的底面半径为rcm,母线长为Lcm,如此r=L=≈22.03S纸帽侧=rL≈×58×22.03=638.87〔cm〕638.87×20=12777.4〔cm2〕所以,至少需要12777.4cm2的纸.例2.扇形的圆心角为120°,面积为300cm2.〔1〕求扇形的弧长;〔2〕假如将此扇形卷成一个圆锥,如此这个圆锥的轴截面面积为多少?分析:〔1〕由S扇形=求出R,再代入L=求得.〔2〕假如将此扇形卷成一个圆锥,扇形的弧长就是圆锥底面圆的周长,就可求圆的半径,其截面是一个以底是直径,圆锥母线为腰的等腰三角形.解:〔1〕如下列图:∵300=∴R=30∴弧长L==20〔cm〕〔2〕如下列图:∵20=20r∴r=10,R=30AD==20∴S轴截面=×BC×AD=×2×10×20=200〔cm2〕因此,扇形的弧长是20cm卷成圆锥的轴截面是200cm2.三、巩固练习教材P124练习1、2.四、应用拓展例3.\n如下列图,经过原点O〔0,0〕和A〔1,-3〕,B〔-1,5〕两点的曲线是抛物线y=ax2+bx+c〔a≠0〕.〔1〕求出图中曲线的解析式;〔2〕设抛物线与x轴的另外一个交点为C,以OC为直径作⊙M,如果抛物线上一点P作⊙M的切线PD,切点为D,且与y轴的正半轴交点为E,连结MD,点E的坐标为〔0,m〕,求四边形EOMD的面积〔用含m的代数式表示〕.〔3〕延长DM交⊙M于点N,连结ON、OD,当点P在〔2〕的条件下运动到位置时,能使得S四边形EOMD=S△DON请求出此时点P的坐标.解:〔1〕∵O〔0,0〕,A〔1,-3〕,B〔-1,5〕在曲线y=ax2+bx+c〔a≠0〕上∴解得a=1,b=-4,c=0∴图中曲线的解析式是y=x2-4x〔2〕抛物线y=x2-4x与x轴的另一个交点坐标为c〔4,0〕,连结EM,∴⊙M的半径为2,即OM=DM=2∵ED、EO都是⊙M的切线∴EO=ED∴△EOM≌△EDM∴S四边形EOMD=2S△OME=2×OM·OE=2m〔3〕设点D的坐标为〔x0,y0〕∵S△DON=2S△DOM=2×OM×y0=2y0∴S四边形ECMD=S△DON时即2m=2y0,m=y0∵m=y0∴ED∥x轴又∵ED为切线∴D〔2,2〕∵点P在直线ED上,故设P〔x,2〕∵P在圆中曲线y=x2-4x上∴2=x2-4x解得:x==2±∴P1〔2+,0〕,P2〔2-,2〕为所求.五、归纳小结〔学生归纳,教师点评〕本节课应掌握:1.叫圆锥的母线.2.会推导圆锥的侧面积和全面积公式并能灵活应用它们解决问题.六、布置作业\n1.教材P124复习巩固4P125综合运用8拓广探索9、10.2.选用课时作业设计.第二课时作业设计一、选择题1.圆锥的母线长为13cm,底面半径为5cm,如此此圆锥的高线为〔〕A.6cmB.8cmC.10cmD.12cm2.在半径为50cm的圆形铁皮上剪去一块扇形铁皮,用剩余局部制作成一个底面直径为80cm,母线长为50cm的圆锥形烟囱帽,如此剪去的扇形的圆心角度数为〔〕A.228°B.144°C.72°D.36°3.如下列图,圆锥的母线长是3,底面半径是1,A是底面圆周上一点,从点A出发绕侧面一周,再回到点A的最短的路线长是〔〕A.6B.C.3D.3二、填空题1.母线长为L,底面半径为r的圆锥的外表积=_______.2.矩形ABCD的边AB=5cm,AD=8cm,以直线AD为轴旋转一周,所得圆柱体的外表积是__________〔用含的代数式表示〕3.粮仓顶部是一个圆锥形,其底面周长为36m,母线长为8m,为防雨需在粮仓顶部铺上油毡,如果按用料的10%计接头的重合局部,那么这座粮仓实际需用________m2的油毡.三、综合提高题1.一个圆锥形和烟囱帽的底面直径是40cm,母线长是120cm,需要加工这样的一个烟囱帽,请你画一画:〔1〕至少需要多少厘米铁皮〔不计接头〕〔2〕如果用一X圆形铁皮作为材料来制作这个烟囱帽,那么这个圆形铁皮的半径至少应是多少?2.如下列图,圆锥的母线长AB=8cm,轴截面的顶角为60°,求圆锥全面积.3.如下列图,一个几何体是从高为4m,底面半径为3cm的圆柱中挖掉一个圆锥后得到的,圆锥的底面就是圆柱的上底面,圆锥的顶点在圆柱下底面的圆心上,求这个几何体的外表积.\n