- 15.10 KB
- 2022-08-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
初中数学教案人教版\n初中数学教案人教版【篇一:初中数学教案人教版】最新人教版初中数学八年级上册教案全集第11章三角形第11章三角形教材内容本章主要内容有三角形的有关线段、角,多边形及内角和,镶嵌等。〔过程与方法〕1、在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;2、在灵活运用知识解决有关问题的过程中,体验并掌握探索、归纳图形性质的推理方法,进一步培说理和进行简单推理的能力。〔情感、态度与价值观〕1、体会数学与现实生活的联系,增强克服困难的勇气和信心;2、会应用数学知识解决一些简单的实际问题,增强应用意识;3、使学生进一步形成数学来源于实践,反过来又服务于实践的辩证唯物主义观点。重点难点三角形三边关系、内角和,多边形的外角和与内角和公式,镶嵌是重点;三角形内角和等于1800的证明,根据三条线段的长度判断它们能否构成三角形及简单的平面镶嵌设计是难点。课时分配11.1与三角形有关的线段2课时11.2与三角形有关的角2课时11.3多边形及其内角和2课时本章小结2课时11.1.1三角形的边[教学目标]〔知识与技能〕1了解三角形的意义,认识三角形的边、内角、顶点,能用符号语言表示三角形;2理解三角形三边不等的关系,会判断三条线段能否构成一个三角形,并能运用它解决有关的问题.〔过程与方法〕〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯;〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]\n三角形的有关概念和符号表示,三角形三边间的不等关系是重点;用三角形三边不等关系判定三条线段可否组成三角形是难点。[教学过程]一、情景导入[教学过程]一、情景导入三角形是一种最常见的几何图形,[投影1-6]如古埃及金字塔,香港中银大厦,交通标志,等等,处处都有三角形的形象。那么什么叫做三角形呢?二、三角形及有关概念不在一条直线上的三条线段首尾顺次相接组成的图形叫做三角形。注意:三条线段必须①不在一条直线上,②首尾顺次相接。组成三角形的线段叫做三角形的边,相邻两边所组成的角叫做三角形的内角,简称角,相邻两边的公共端点是三角形的顶点。三角形abc用符号表示为△abc。三角形abc的顶点c所对的边ab可用c表示,顶点b所对的边ac可用b表示,顶点a所对的边bc可用a表示.三、三角形三边的不等关系探究:[投影7]任意画一个△abc,假设有一只小虫要从b点出发,沿三角形的边爬到c,它有几种路线可以选择?各条路线的长一样吗?为什么?有两条路线:(1)从bc,(2)从bac;不一样,ab+ac>bc①;因为两点之间线段最短。同样地有ac+bc>ab②ab+bc>ac③由式子①②③我们可以知道什么?三角形的任意两边之和大于第三边.四、三角形的分类我们知道,三角形按角可分为锐角三角形、钝角三角形、直角三角形,我们把锐角三角形、钝角三角形统称为斜三角形。按角分类:三角形直角三角形斜三角形锐角三角形????????????abc(1)cba钝角三角形那么三角形按边如何进行分类呢?请你按有几条边相等将三角形分类。三边都相等的三角形叫做等边三角形;有两条边相等的三角形叫做等腰三角形;三边都不相等的三角形叫做不等边三角形。显然,等边三角形是特殊的等腰三角形。按边分类:三角形不等边三角形等腰三角形底和腰不等的等腰三角形等边三角形五、例题例用一条长为18㎝的细绳围成一个等腰三角形。(1)如果腰长是底边的2\n倍,那么各边的长是多少?(2)能围成有一边长为4㎝的等腰三角形吗?为什么?分析:(1)等腰三角形三边的长是多少?若设底边长为x㎝,则腰长是多少?(2)边长为4㎝是什么意思?解:(1)设底边长为x㎝,则腰长2x㎝。x+2x+2x=18解得x=3.6所以,三边长分别为3.6㎝,7.2㎝,7.2㎝.(2)如果长为4㎝的边为底边,设腰长为x㎝,则4+2x=18解得x=7如果长为4㎝的边为腰,设底边长为x㎝,则24+x=18解得x=10因为4+4<10,出现两边的和小于第三边的情况,所以不能围成腰长是4㎝的等腰三角形。由以上讨论可知,可以围成底边长是4㎝的等腰三角形。五、课堂练习课本4页练习1、2题。六、课堂小结1、三角形及有关概念;2、三角形的分类;3、三角形三边的不等关系及应用。作业:课本8页1、2、6;教后记教后记????????????腰腰底边顶角底角底角11.1.2三角形的高、中线与角平分线〔教学目标〕〔知识与技能〕1、经历画图的过程,认识三角形的高、中线与角平分线;2、会画三角形的高、中线与角平分线;3、了解三角形的三条高所在的直线,三条中线,三条角平分线分别交于一点.〔过程与方法〕〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心〔重点难点〕三角形的高、中线与角平分线是重点;三角形的角平分线与角的平分线的区别,画钝角三角形的高是难点.〔教学过程〕一、导入新课我们已经知道什么是三角形,也学过三角形的高。三角形的主要线段除高外,还有中线和角平分线值得我们研究。二、三角形的高请你在图中画出△abc的一条高并说说你画法。\n从△abc的顶点a向它所对的边bc所在的直线画垂线,垂足为d,所得线段ad叫做△abc的边bc上的高,表示为adbc于点d。注意:高与垂线不同,高是线段,垂线是直线。请你再画出这个三角形ab、ac边上的高,看看有什么发现?三角形的三条高相交于一点。如果△abc是直角三角形、钝角三角形,上面的结论还成立吗?现在我们来画钝角三角形三边上的高,如图。显然,上面的结论成立。请你画一个直角三角形,再画出它三边上的高。上面的结论还成立。三、三角形的中线如图,我们把连结△abc的顶点a和它的对边bc的中点d,所得线段ad叫做△abc的边bc上的中线,表示为bd=dc或bd=dc=1/2bc或2bd=2dc=bc.请你在图中画出△abc的另两条边上的中线,看看有什么发现?三角的三条中线相交于一点。如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。上面的结论还成立。abcodefdcbadcba四、三角形的角平分线如图,画a的平分线ad,交a所对的边bc于点d,所得线段ad叫做△abc的角平分线,表示为bad=cad或bad=cad=1/2bac或2bad=2cad=bac。思考:三角形的角平分线与角的平分线是一样的吗?三角形的角平分线是线段,而角的平分线是射线,是不一样的。请你在图中再画出另两个角的平分线,看看有什么发现?三角形三个角的平分线相交于一点。如果三角形是直角三角形、钝角三角形,上面的结论还成立吗?请画图回答。上面的结论还成立。想一想:三角形的三条高、三条中线、三条角平分线的交点有什么不同?\n三角形的三条中线的交点、三条角平分线的交点在三角形的内部,而锐三角形的三条高的交点在三角形的内部,直角三角形三条高的交战在角直角顶点,钝角三角形的三条高的交点在三角形的外部。五、课堂练习课本5页练习1、2题。六、课堂小结1、三角形的高、中线、角平分线的概念和画法。2、三角形的三条高、三条中线、三条角平分线及交点的位置规律。七作业:课本8页3、4;八、教后记11.1.3三角形的稳定性11.1.3三角形的稳定性21dcba[教学目标]〔知识与技能〕1、知道三角形具有稳定性,四边形没有稳定性;2、了解三角形的稳定性在生产、生活中的应用。〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形稳定性及应用。[教学过程]一、情景导入盖房子时,在窗框未安装之前,木工师傅常常先在窗框上斜钉一根木条,为什么要这样做呢?二、三角形的稳定性〔实验〕1、把三根木条用钉子钉成一个三角形木架,然后扭动它,它的形状会改变吗?不会改变。2、把四根木条用钉子钉成一个四边形木架,然后扭动它,它的形状会改变吗?会改变。3、在四边形的木架上再钉一根木条,将它的一对顶点连接起来,然后扭动它,它的形状会改变吗?不会改变。从上面的实验中,你能得出什么结论?三角形具有稳定性,而四边形不具有稳定性。三、三角形稳定性和四边形不稳定的应用三角形具有稳定性固然好,四边形不具有稳定性也未必不好,它们在生产和生活中都有广泛的应用。如:钢架桥、屋顶钢架和起重机都是利用三角形的稳定性,活动挂架则是利用四边形的不稳定性。你还能举出一些例子吗?四、课堂练习1、下列图形中具有稳定性的是()a正方形b长方形c直角三角形\nd平行四边形2、要使下列木架稳定各至少需要多少根木棍?(2)3、课本7页练习。五作业:8页5;9页10题。六、教后记11.2.1三角形的内角11.2.1三角形的内角[教学目标]〔知识与技能〕掌握三角形内角和定理。〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形内角和定理是重点;三角形内角和定理的证明是难点。[教学过程]一、导入新课我们在小学就知道三角形内角和等于1800,这个结论是通过实验得到的,这个命题是不是真命题还需要证明,怎样证明呢?二、三角形内角和的证明回顾我们小学做过的实验,你是怎样操作的?把一个三角形的两个角剪下拼在第三个角的顶点处,用量角器量出bcd的度数,可得到a+b+acb=1800。[投影1]图1想一想,还可以怎样拼?①剪下a,按图(2)拼在一起,可得到a+b+acb=1800。图2②把b??和c??剪下按图(3)拼在一起,可得到a+b+acb=1800。如果把上面移动的角在图上进行转移,由图1你能想到证明三角形内角和等于1800的方法吗?已知△abc,求证:a+b+c=1800。证明一过点c作cm‖ab,则a=acm,b=dcm,又acb+acm+dcm=1800a+b+acb=1800。即:三角形的内角和等于1800。由图2、图3你又能想到什么证明方法?请说说证明过程。三、例题例如图,c岛在a岛的北偏东500方向,b岛在a岛的北偏东800方向,c岛在b岛的北偏西400方向,从c岛看a、b两岛的视角acb是多少度?分析:怎样能求出acb的度数?根据三角形内角和定理,只需求出cab和cba的度数即可。cab等于多少度?怎样求cba的度数?解:cba=bad-cad=800-500=300∵ad‖bebad+abe=1800abe=1800-bad=1800-800=1000abc=\nabe-ebc=1000-400=600acb=1800-abc-cab=1800-600-300=900答:从c岛看ab两岛的视角acb=1800是900。四、课堂练习课本13页1、2题。五作业:16页1、3、4;六、教后记11.2.2三角形的外角11.2.2三角形的外角[教学目标]〔知识与技能〕理解三角形的外角;2、掌握三角形外角的性质,能利用三角形外角的性质解决问题。〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]三角形的外角和三角形外角的性质是重点;理解三角形的外角是难点。[教学过程]一、导入新课〔投影1〕如图,△abc的三个内角是什么?它们有什么关系?是a、b、c,它们的和是1800。若延长bc至d,则acd是什么角?这个角与△abc的三个内角有什么关系?二、三角形外角的概念acd叫做△abc的外角。也就是,三角形一边与另一边的延长线组成的角,叫做三角形的外角。想一想,三角形的外角共有几个?共有六个。注意:每个顶点处有两个外角,它们是对顶角。研究与三角形外角有关的问题时,通常每个顶点处取一个外角.三、三角形外角的性质容易知道,三角形的外角acd与相邻的内角acb是邻补角,那与另外两个角有怎样的数量关系呢?〔投影2〕如图,这是我们证明三角形内角和定理时画的辅助线,你能就此图说明acd与a、b的关系吗?∵ce‖ab,a=1,b=2又acd=1+2acd=a+b你能用文字语言叙述这个结论吗?三角形的一个外角等于与它不相邻的两个内角之和。由加数与和的关系你还能知道什么?三角形的一个外角大于与它不相邻的任何一个内角。即aacd??????,bacd??????。\n四、例题〔投影3〕例如图,1、2、3是三角形abc的三个外角,它们的和是多少?分析:1与bac、2与abc、3与acb有什么关系?bac、abc、acb有什么关系?解:∵1+bac=1800,2+abc=1800,3+acb=1800,1+bac+2+abc+3+acb=5400又bac+abc+acb=18001+2+3==3600。你能用语言叙述本例的结论吗?三角形外角的和等于3600。五、课堂练习课本15页练习;六、课堂小结1、什么是三角形外角?2、三角形的外角有哪些性质?七、作业:课本12页5、6;八、教后记11.3.1多边形[教学目标]〔知识与技能〕1、了解多边形及有关概念,理解正多边形的概念.2、区别凸多边形与凹多边形.〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心[重点难点]多边形及有关概念、正多边形的概念是重点;区别凸多边形与凹多边形是难点。[教学过程]一、情景导入[投影1]看下面的图片,你能从中找出由一些线段围成的图形吗?二、多边形及有关概念这些图形有什么特点?由几条线段组成;它们不在同一条直线上;首尾顺次相接.这种在平面内,由一些不在同一条直线上的线段首尾顺次相接组成的图形叫做多边形。多边形按组成它的线段的条数分成三角形、四边形、五边形、n边形。这就是说,一个多边形由几条线段组成,就叫做几边形,三角形是最简单的多边形。与三角形类似地,多边形相邻两边组成的角叫做多边形的内角,如图中的a、b、c、d、e。多边形的边与它的邻边的延长线组成的角叫做多边形的外角.如图中的1是五边形abcde的一个外角。[投影2]连接多边形的不相邻的两个顶点的线段,叫做多边形的对角线.四边形有几条对角线?五边形有几条对角线?画图看看。你能猜想n边形有多少条对角线吗?说说你的想法。\nn边形有1/2n(n-3)条对角线。因为从n边形的一个顶点可以引n-3条对角线,n个顶点共引n(n-3)条对角线,又由于连接任意两个顶点的两条对角线是相同的,所以,n边形有1/2n(n-3)条对角线。三、凸多边形和凹多边形[投影3]如图,下面的两个多边形有什么不同?在图(1)中,画出四边形abcd的任何一条边所在的直线,整个图形都在这条直线的同一侧,这样的四边形叫做凸四边形,这样的多边形称为凸多边形;而图(2)就不满足上述凸多边形的特征,因为我们画bd所在直线,整个多边形不都在这条直线的同一侧,我们称它为凹多边形。注意:今后我们讨论的多边形指的都是凸多边形.四、正多边形的概念我们知道,等边三角形、正方形的各个角都相等,各条边都相等,像这样各个角都相等,各条边都相等的多边形叫做正多边形。[投影4]下面是正多边形的一些例子。五、课堂练习课本21页练习1、2。3、有五个人在告别的时候相互各握了一次手,他们共握了多少次手?你能找到一个几何模型来说明吗?六、课堂小结1、多边形及有关概念。2、区别凸多边形和凹多边形。3、正多边形的概念。4、n边形对角线有1/2n(n-3)条。七、作业:课本24页1。八、教后记11.3.2多边形的内角和11.3.2多边形的内角和[教学目标]〔知识与技能〕1、了解多边形的内角、外角等概念;2、2、能通过不同方法探索多边形的内角和与外角和公式,并会应用它们进行有关计算.〔过程与方法〕在观察、操作、推理、归纳等探索过程中,发展学生的合情推理能力,逐步养成数学推理的习惯〔情感、态度与价值观〕体会数学与现实生活的联系,增强克服困难的勇气和信心\n[重点难点]多边形的内角和与多边形的外角和公式是重点;多边形的内角和定理的推导是难点。[教学过程]一、复习导入我们已经证明了三角形的内角和为180,在小学我们用量角器量过四边形的内角的度数,知道四边形内角的和为360,现在你能利用三角形的内角和定理证明吗?二、多边形的内角和〔投影1〕如图,从四边形的一个顶点出发可以引几条对角线?它们将四边形分成几个三角形?那么四边形的内角和等于多少度?可以引一条对角线;它将四边形分成两个三角形;因此,四边形的内角和=△abd的内角和+△bdc的内角和=2180=360。类似地,你能知道五边形、六边形n边形的内角和是多少度吗?〔投影2〕观察下面的图形,填空:五边形六边形从五边形一个顶点出发可以引对角线,它们将五边形分成三角形,五边形的内角和等于;从六边形一个顶点出发可以引对角线,它们将六边形分成三角形,六边形的内角和等于;〔投影3〕从n边形一个顶点出发,可以引对角线,它们将n边形分成三角形,n边形的内角和等于。n边形的内角和等于(n一2)180.从上面的讨论我们知道,求n边形的内角和可以将n边形分成若干个三角形来求。现在以五边形为例,你还有其它的分法吗?分法一〔投影3〕如图1,在五边形abcde内任取一点o,连结oa、ob、oc、od、oe,则得五个三角形。五边形的内角和为5180一2180=(52)180=540。1234512345abcdeoabcdeo12341234abcdeoabcdeo图1图2分法二〔投影4〕如图2,在边ab上取一点o,连oe、od、oc,则可以(5-1)个三角形。五边形的内角和为(51)180一180=(52)180如果把五边形换成n边形,用同样的方法可以得到n边形内角和=(n一2)180.abcdabcdabcd三、例题〔投影6〕例1如果一个四边形的一组对角互补,那么另一组对角有什么关系?如图,已知四边形abcd中,a+c=180,求b与d的关系.分析:a、b、c、d有什么关系?解:∵a+b+c+d=(4-2)180\n=360又a+c=180b+d=360-(a+c)=180这就是说,如果四边形一组对角互补,那么另一组对角也互补.〔投影7〕例2如图,在六边形的每个顶点处各取一个外角,这些外角的和叫做六边形的外角和.六边形的外角和等于多少?如图,已知1,2,3,4,5,6分别为六边形abcdef的外角,求1+2+3+4+5+6的值.分析:多边形的一个外角同与它相邻的内角有什么关系?六边形的内角和是多少度?12341234abcdefabcdef5656解:∵1+baf=1802+abc=1803+bad=1804+cde=1805+def=1806+efa=1801+baf+2+abc+3+bad+4+cde+5+def+6+efa=6180又1+2+3+4+5+6=4180baf+abc+bad+cde+def+efa=6180-4180=360这就是说,六边形形的外角和为360。如果把六边形换成n边形可以得到同样的结果:n边形的外角和等于360。对此,我们也可以这样来理解。〔投影8〕如图,从多边形的一个顶点a出发,沿多边形各边走过各顶点,再回到a点,然后转向出发时的方向,在行程中所转的各个角的和就是多边形的外角和,由于走了一周,所得的各个角的和等于一个周角,所以多边形的外角和等于360.四、课堂练习课本24页1、2、3题。五、课堂小结n边形的内角和是多少度?n边形的外角和是多少度?六、作业:课本24页2、3;七、教后记本章小结一、知识结构二、回顾与思考1、什么是三角形?什么是多边形?什么是正多边形?三角形是不是多边形?2、什么是三角形的高、中线、角平分线?什么是对角线?三角形有对角线吗?n边形的的对角线有多少条?3、三角形的三条高,三条中线,三条角平分线各有什么特点?4、三角形的内角和是多少?n边形的内角和是多少?你能用三角形的内角和说明n边形的内角和吗?5、三角形的外角和是多少?n边形的外角和是多少?你能说明为什么多边形的外角和与边数无关吗?6、怎样才算是平面镶嵌?平面镶嵌的条件是什么?能单独进行平面镶嵌的多边形有哪些?\n你能举一个几个多边形进行平面镶嵌的例子吗?三、例题导引例1如图,在△abc中,a∶b∶c=3∶4∶5,bd、ce分别是边ac、ab上的高,bd、ce相交于点h,求bhc的度数。例2如图,把△abc沿de折叠,当点a落在四边形bcde内部时,探索a与1+2有什么数量关系?并说明理由。