- 2.14 MB
- 2022-08-09 发布
- 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
- 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
- 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
- 网站客服QQ:403074932
第25章:概率统计25.1.1随机事件(第一课时)知识与技能:通过对生活中各种事件的判断,归纳出必然事件,不可能事件和随机事件的特点,并根据这些特点对有关事件作出准确判断。过程与方法:历经实验操作、观察、思考和总结,归纳出三种事件的各自的本质属性,并抽象成数学概念。情感态度和价值观:体验从事物的表象到本质的探究过程,感受到数学的科学性及生活中丰富的数学现象。重点:随机事件的特点难点:对生活中的随机事件作出准确判断教学程序设计一、创设情境,引入课题1.问题情境下列问题哪些是必然发生的?哪些是不可能发生的?(1)太阳从西边下山;(2)某人的体温是100℃;(3)a2+b2=-1(其中a,b都是实数);(4)水往低处流;(5)酸和碱反应生成盐和水;(6)三个人性别各不相同;(7)一元二次方程x2+2x+3=0无实数解。【设计意图:首先,这几个事件都是学生能熟知的生活常识和学科知识,通过这些生动的、有趣的实例,自然地引出必然事件和不可能事件;其次,必然事件和不可能事件相对于随机事件来说,特征比较明显,学生容易判断,把它们首先提出来,符合由浅入深的理念,容易激发学生的学习积极性。】2.引发思考我们把上面的事件(1)、(4)、(5)、(7)称为必然事件,把事件(2)、(3)、(6)称为不可能事件,那么请问:什么是必然事件?什么又是不可能事件呢?它们的特点各是什么?【设计意图:概念也让学生来完成,把课堂尽量多地还给学生,以此来体现自主学习,主动参与原理念。】二、引导两个活动,自主探索新知\n活动1:5名同学参加演讲比赛,以抽签方式决定每个人的出场顺序。签筒中有5根形状大小相同的纸签,上面分别标有出场的序号1,2,3,4,5。小军首先抽签,他在看不到的纸签上的数字的情况从签筒中随机(任意)地取一根纸签。请考虑以下问题:(1)抽到的序号是0,可能吗?这是什么事件?(2)抽到的序号小于6,可能吗?这是什么事件?(3)抽到的序号是1,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?根据学生回答的具体情况,教师适当地加点拔和引导。【设计意图:“抽签”这个活动是学生容易理解或亲身经历过的,操作简单省时,又具有很好的经济性,最主要的是活动中含有丰富的随机事件,事件(3)就是一个典型的事件,它的提出,让学生产生新的认知冲突,从而引发探究欲望】活动2:小伟掷一个质地均匀的正方形骰子,骰子的六个面上分别刻有1至6的点数。请考虑以下问题,掷一次骰子,观察骰子向上的一面:(1)出现的点数是7,可能吗?这是什么事件?(2)出现的点数大于0,可能吗?这是什么事件?(3)出现的点数是4,可能吗?这是什么事件?(4)你能列举与事件(3)相似的事件吗?【设计意图:随机事件对学生来说是陌生的,它不同于其他数学概念,因此要理解随机事件的含义,由学生来描述随机事件的概念,进行活动2很有必要,便于学生透过随机事件的表象,概括出随机事件的本质特性,从而自主描述随机事件这一概念】提出问题,探索概念(1)上述两个活动中的两个事件(3)与必然事件和不可能事件的区别在哪里?(2)怎样的事件称为随机事件呢?【设计意图:教师让学生充分发表意见,相互补充,相互交流,然后引导学生建构随机事件的定义,充分发挥学生的主观能动性。】三、应用练习,巩固新知练习:指出下列事件中,哪些是必然事件,哪些是不可能事件,哪些是随机事件。(1)两直线平行,内错角相等;(2)刘翔再次打破110米栏的世界纪录;(3)打靶命中靶心;(4)掷一次骰子,向上一面是3点;(5)13个人中,至少有两个人出生的月份相同;(6)经过有信号灯的十字路口,遇见红灯;(7)在装有3个球的布袋里摸出4个球(8)物体在重力的作用下自由下落。(9)抛掷一千枚硬币,全部正面朝上。\n【设计意图:第(9)题可能出现不同答案,这是意料之中的,意在让学生明白,只要可能性存在,哪怕可能性很小,我们也不能认定它为不可能事件;同样,尽管某些事件发生的可能性很大,也不能等同于必然事件。】四、小结并布置作业。教学反思25.1.1随机事件(第二课时)知识技能:通过“摸球”这样一个有趣的试验,形成对随机事件发生的可能性大小作定性分析的能力,了解影响随机事件发生的可能性大小的因素。过程和方法:历经“猜测—动手操作—收集数据—数据处理—验证结果”,及时发现问题,解决问题,总结出随机事件发生的可能性大小的特点以及影响随机事件发生的可能性大小的客观条件。情感态度和价值观:在试验过程中,感受合作学习的乐趣,养成合作学习的良好习惯;得出随机事件发生的可能性大小的准确结论。需经过大量重复的试验,让学生从中体验到科学的探究态度。教学重点:对随机事件发生的可能性大小的定性分析教学难点:理解大量重复试验的必要性。一、创设情境,引入课题1、摸球试验:袋中装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,在看不到球的条件下,随机地从袋子中摸出一个球。2、提出问题:我们把“摸到白球”记为事件A,把“摸到黑球”记为事件B,提问:(1)事件A和事件B是随机事件吗?(2)哪个事件发生的可能性大?【设计意图:“摸球”试验操作方便、简单且可重复,又为学生所熟知,学生做起来感觉亲切,有趣,并且容易依据生活经验猜到正确结论,这样易于激发学生的学习热情。】二、分组试验、收集数据,验证结果1、把学生分成2人一组,其中一人把球搅均匀,另一人摸球并把结果记录在表1中。事件A发生的次数事件B发生的次数结果(指哪个事件发生的次数多)10次摸球20次摸球【设计意图:设计“10次摸球”和“20次摸球”,意在引起结果的变化。】2、小组汇报试验结果,教师统计结果填于表2。\n得到结果1的组数得到结果2的组数10次摸球20次摸球注:结果1指事件A发生的次数多,结果2指事件B发生的次数多。3、提出问题(1)“10次摸球”的试验中,事件A发生的可能性大的有几组?“20次摸球”的试验中呢?(2)你认为哪种试验更能获得较正确结论呢?(3)为了能够更大可能地获得正确结论,我们应该怎样做?【设计意图:对“10次摸球”得到正确结论的组数和“20次摸球”得到的正确结论的组数进行比较,使学生明白,增加摸球次数更宜于接近正确结论,本小节也可以让学生再进行“40次摸球”试验。】4、进行大量重复试验,验证猜测的正确性。教师请同学们进行400次重复的“摸球”试验,教师提问:如果把刚才各小组的20次“摸球”合并在一起是否等同于400次“摸球”?这样做会不会影响试验的正确性?待学生回答后,教师把结果统计在表中。事件A发生的次数事件B发生的次数400次摸球【设计意图:让学生养成动脑筋,想办法的学习习惯,明白小组合作的优势。】5、对表中的数据进行分析,得出结论。提问:通过上述试验,你认为,要判断同一试验中哪个事件发生可能性的较大,必须怎么做?先让学生回答,回答时教师注意纠正学生的不准确的用语,最后由教师总结:要判断随机事件发生的可能性大小,必须经过大量重复试验。【设计意图:本小节是教学难点,这个结论由学生得出,体现了自主学习的理念,有利于学生思维的发展。】6、对试验结果作定性分析。在经过大量重复摸球以后,我们可以确定,事件A发生的可能性大于事件B发生的可能性,请同学们分析一下其原因是什么?【设计意图:这是本节课的主要内容之一,是本节课的出发点,也是本节课的归宿,把这个问题留给学生,也是体现了以学生为主体,让学生自主探索、自主学习的理念。】三、练习反馈1、一个袋子里装有20个形状、质地、大小一样的球,其中4个白球,2个红球,3个黑球,其它都是黄球,从中任摸一个,摸中哪种球的可能性最大?2、一个人随意翻书三次,三次都翻到了偶数页,我们能否说翻到偶数页的可能性就大?\n3、袋子里装有红、白两种颜色的小球,质地、大小、形状一样,小明从中随机摸出一个球,然后放回,如果小明5次摸到红球,能否断定袋子里红球的数量比白球多?怎样做才能判断哪种颜色的球数量较多?4、已知地球表面陆地面积与海洋面积的比均为3:7。如果宇宙中飞来一块陨石落在地球上,“落在海洋里”与“落在陆地上”哪个可能性更大?四、小结并布置作业。教学反思课题:25.1.2概率的意义教学目标:〈一〉知识与技能1.知道通过大量重复试验时的频率可以作为事件发生概率的估计值2.在具体情境中了解概率的意义〈二〉教学思考让学生经历猜想试验--收集数据--分析结果的探索过程,丰富对随机现象的体验,体会概率是描述不确定现象规律的数学模型.初步理解频率与概率的关系.〈三〉解决问题在分组合作学习过程中积累数学活动经验,发展学生合作交流的意识与能力.锻炼质疑、独立思考的习惯与精神,帮助学生逐步建立正确的随机观念.〈四〉情感态度与价值观在合作探究学习过程中,激发学生学习的好奇心与求知欲.体验数学的价值与学习的乐趣.通过概率意义教学,渗透辩证思想教育.【教学重点】在具体情境中了解概率意义.【教学难点】对频率与概率关系的初步理解【教具准备】壹元硬币数枚、图钉数枚、多媒体课件【教学过程】一、创设情境,引出问题教师提出问题:周末市体育场有一场精彩的篮球比赛,老师手中只有一张球票,小强与小明都是班里的篮球迷,两人都想去.我很为难,真不知该把球给谁.请大家帮我想个办法来决定把球票给谁.学生:抓阄、抽签、猜拳、投硬币,……教师对同学的较好想法予以肯定.(学生肯定有许多较好的想法,在众多方法中推举出大家较认可的方法.如抓阄、投硬币)追问,为什么要用抓阄、投硬币的方法呢?由学生讨论:这样做公平.能保证小强与小明得到球票的可能性一样大在学生讨论发言后,教师评价归纳.\n用抛掷硬币的方法分配球票是个随机事件,尽管事先不能确定“正面朝上”还上“反面朝上”,但同学们很容易感觉到或猜到这两个随机事件发生的可能性是一样的,各占一半,所以小强、小明得到球票的可能性一样大.质疑:那么,这种直觉是否真的是正确的呢?引导学生以投掷壹元硬币为例,不妨动手做投掷硬币的试验来验证一下.说明:现实中不确定现象是大量存在的,新课标指出:“学生数学学习内容应当是现实的、有意义、富有挑战的”,设置实际生活问题情境贴近学生的生活实际,很容易激发学生的学习热情,教师应对此予以肯定,并鼓励学生积极思考,为课堂教学营造民主和谐的气氛,也为下一步引导学生开展探索交流活动打下基础.二、动手实践,合作探究1.教师布置试验任务.(1)明确规则.把全班分成10组,每组中有一名学生投掷硬币,另一名同学作记录,其余同学观察试验必须在同样条件下进行.(2)明确任务,每组掷币50次,以实事求是的态度,认真统计“正面朝上”的频数及“正面朝上”的频率,整理试验的数据,并记录下来..2.教师巡视学生分组试验情况.注意:(1).观察学生在探究活动中,是否积极参与试验活动、是否愿意交流等,关注学生是否积极思考、勇于克服困难.(2).要求真实记录试验情况.对于合作学习中有可能产生的纪律问题予以调控.3.各组汇报实验结果.由于试验次数较少,所以有可能有些组试验获得的“正面朝上”的频率与先前的猜想有出入.提出问题:是不是我们的猜想出了问题?引导学生分析讨论产生差异的原因.在学生充分讨论的基础上,启发学生分析讨论产生差异的原因.使学生认识到每次随机试验的频率具有不确定性,同时相信随机事件发生的频率也有规律性,引导他们小组合作,进一步探究.解决的办法是增加试验的次数,鉴于课堂时间有限,引导学生进行全班交流合作.4.全班交流.把各组测得数据一一汇报,教师将各组数据记录在黑板上.全班同学对数据进行累计,按照书上P140要求填好25-2.并根据所整理的数据,在25.1-1图上标注出对应的点,完成统计图.表25-2抛掷次数50100150200250300350400450500“正面向上”的频数“正面向上”的频率0.51正面向上的频率投掷次数n10050250150500450300350200图25.1-1\n想一想1(投影出示).观察统计表与统计图,你发现“正面向上”的频率有什么规律?注意学生的语言表述情况,意思正确予以肯定与鼓励.“正面朝上”的频率在0.5上下波动.想一想2(投影出示)随着抛掷次数增加,“正面向上”的频率变化趋势有何规律?在学生讨论的基础上,教师帮助归纳.使学生认识到每次试验中随机事件发生的频率具有不确定性,同时发现随机事件发生的频率也有规律性.在试验次数较少时,“正面朝上”的频率起伏较大,而随着试验次数的逐渐增加,一般地,频率会趋于稳定,“正面朝上”的频率越来越接近0.5.这也与我们刚开始的猜想是一致的.我们就用0.5这个常数表示“正面向上”发生的可能性的大小.说明:注意帮助解决学生在填写统计表与统计图遇到的困难.通过以上实践探究活动,让学生真实地感受到、清楚地观察到试验所体现的规律,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).鼓励学生在学习中要积极合作交流,思考探究.学会倾听别人意见,勇于表达自己的见解.为了给学生提供大量的、快捷的试验数据,利用计算机模拟掷硬币试验的课件,丰富学生的体验、提高课堂教学效率,使他们能直观地、便捷地观察到试验结果的规律性--大量重复试验中,事件发生的频率逐渐稳定到某个常数附近.其实,历史上有许多著名数学家也做过掷硬币的试验.让学生阅读历史上数学家做掷币试验的数据统计表(看书P141表25-3).表25-3试验者抛掷次数(n)“正面朝上”次数(m)“正面向上”频率(m/n)棣莫弗204810610.518布丰404020480.5069费勒1000049790.4979皮尔逊1200060190.5016皮尔逊24000120120.5005通过以上学生亲自动手实践,电脑辅助演示,历史材料展示,让学生真实地感受到、清楚地观察到试验所体现的规律,大量重复试验中,事件发生的频率逐渐稳定到某个常数附近,即大量重复试验事件发生的频率接近事件发生的可能性的大小(概率).同时,又感受到无论试验次数多么大,也无法保证事件发生的频率充分地接近事件发生的概率.在探究学习过程中,应注意评价学生在活动中参与程度、自信心、是否愿意交流等,鼓励学生在学习中不怕困难积极思考,敢于表达自己的观点与感受,养成实事求是的科学态度.5.下面我们能否研究一下“反面向上”的频率情况?学生自然可依照“正面朝上”的研究方法,很容易总结得出:“反面向上”的频率也相应稳定到0.5.教师归纳:(1)由以上试验,我们验证了开始的猜想,即抛掷一枚质地均匀的硬币时,“正面向上”与“反面向上”的可能性相等(各占一半).也就是说,用抛掷硬币的方法可以使小明与小强得到球票的可能性一样.(2)在实际生活还有许多这样的例子,如在足球比赛中,裁判用掷硬币的办法来决定双方的比赛场地等等.说明:这个环节,让学生亲身经历了猜想试验——收集数据——分析结果的探索过程,在真实数据的分析中形成数学思考,在讨论交流中达成知识的主动建构,为下一环节概率意义的教学作了很好的铺垫.三、评价概括,揭示新知问题1.通过以上大量试验,你对频率有什么新的认识?有没有发现频率还有其他作用?\n学生探究交流.发现随机事件的可能性的大小可以用随机事件发生的频率逐渐稳定到的值(或常数)估计或去描述.通过猜想试验及探究讨论,学生不难有以上认识.对学生可能存在语言上、描述中的不准确等注意予以纠正,但要求不必过高.归纳:以上我们用随机事件发生的频率逐渐稳定到的常数刻画了随机事件的可能性的大小.那么我们给这样的常数一个名称,引入概率定义.给出概率定义(板书):一般地,在大量重复试验中,如果事件A发生的频率会稳定在某个常数p附近,那么这个常数p就叫做事件A的概率(probability),记作P(A)=p.注意指出:1.概率是随机事件发生的可能性的大小的数量反映.2.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.想一想(学生交流讨论)问题2.频率与概率有什么区别与联系?从定义可以得到二者的联系,可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.说明:猜想试验、分析讨论、合作探究的学习方式十分有益于学生对概率意义的理解,使之明确频率与概率的联系,也使本节课教学重难点得以突破.为下节课进一步研究概率和今后的学习打下了基础.当然,学生随机观念的养成是循序渐进的、长期的.这节课教学应把握教学难度,注意关注学生接受情况.四.练习巩固,发展提高.学生练习1.书上P143.练习.1.巩固用频率估计概率的方法.2.书上P143.练习.2巩固对概率意义的理解.教师应当关注学生对知识掌握情况,帮助学生解决遇到的问题.五.归纳总结,交流收获:1.学生互相交流这节课的体会与收获,教师可将学生的总结与板书串一起,使学生对知识掌握条理化、系统化.2.在学生交流总结时,还应注意总结评价这节课所经历的探索过程,体会到的数学价值与合作交流学习的意义.【作业设计】(1)完成P144习题25.12、4(2)课外活动分小组活动,用试验方法获得图钉从一定高度落下后钉尖着地的概率.25.2用列举法求概率(第一课时)教学目标1.理解P(A)=(在一次试验中有n种可能的结果,其中A包含m种)的意义.2.应用P(A)=解决一些实际问题.\n复习概率的意义,为解决利用一般方法求概率的繁琐,探究用特殊方法—列举法求概率的简便方法,然后应用这种方法解决一些实际问题.重点难点1.重点:一般地,如果在一次试验中,有几种可能的结果,并且它们发生的可能性都相等,事件A包含其中的。种结果,那么事件A发生的概率为P(A)=,以及运用它解决实际间题.2.难点与关键:通过实验理解P(A)=并应用它解决一些具体题目教学过程一、复习引入(老师口问.学生口答)请同学们回答下列问题.1.概率是什么?2.P(A)的取值范围是什么?3.在大量重复试验中,什么值会稳定在一个常数上?俄们又把这个常数叫做什么?4.A=必然事件,B是不可能发生的事件,C是随机事件.诸你画出数轴把这三个量表示出来.老师点评:1,(口述)一般地,在大量重复试验中,如果事件A发生的频率会稳定在某一个常数P附近,那么这个常数P就叫做事件A的概率,记为P(A)=P.2.(板书)0≤P≤1.3.(口述)频率、概率.二、探索新知不管求什么事件的概率,我们都可以做大量的试脸.求频率得概率,这是上一节课也是刚才复习的内容,它具有普遍性,但求起来确实很麻烦,是否有比较简单的方法,这种方法就是我们今天要介绍的方法—列举法,把学生分为10组,按要求做试验并回答问题.1.从分别标有1,2,3,4,5号的5根纸签中随机地抽取一根.抽出的号码有多少种?其抽到1的概率为多少?2.掷一个骰子,向上的一面的点数有多少种可能?向上一面的点数是1的概率是多少?老师点评:1.可能结果有1,2,3,4,5等5种杯由于纸签的形状、大小相同,又是随机抽取的,所以我们可以认为:每个号被抽到的可能性相等,都是1/5.其概率是1/5。2.有1,2,3,4,5,6等6种可能.由于股子的构造相同质地均匀,又是随机掷出的,所以我们可以断言:每个结果的可能性相等,都是1/6,所以所求概率是1/6所求。以上两个试验有两个共同的特点:1.一次试验中,可能出现的结果有限多个.2.一次试验中,各种结果发生的可能性相等.对于具有上述特点的试验,我们可以从事件所包含的各种可能的结果在全部可能的试验结果中所占的比分析出事件的概率.因此,一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的、种结果,那么李件A发生的概率为P(A)=例1.小李手里有红桃1,2,3,4,5,6,从中任抽取一张牌,观察其牌上的数字.求下列事件的概率.(1)牌上的数字为3;(2)牌上的数字为奇数;(3)牌上的数字为大于3且小于6.\n分析:因为从6张牌子任抽取一张符合刚才总结的试验的两个特点,所以可用P(A)=来求解.解:任抽取一张牌子,其出现数字可能为1,2,3,4,5,6,共6种,这些数字出现的可能性相同.(1)P(点数为3)=1/6;(2)P(点数为奇数)=3/6=1/2;(3)牌上的数字为大于3且小于6的有4,5两种.所以P(点数大于3且小于6)=1/3例2:如图25-7所示,有一个转盘,转盘分成4个相同的扇形,颇色分为红、绿、黄三种颇色,指针的位置固定,转动转盘后任其自由停止.其中的某个扇形会恰好停在指针所指的位里(指针指向两个扇形的交线时,当作指向右边的扇形),求下列事件的概率(1)指针指向绿色;(2)指针指向红色或黄色(3)指针不指向红色.红红黄绿分析:转一次转盘,它的可能结果有4种—有限个,并且各种结果发生的可能性相等.因此,它可以应用“P(A)=”问题,即“列举法”求概率.解,(1)P(指针,向绿色)=1/4;(2)P(指针指向红色或黄色)=3/4;(3)P(指针不指向红色)=1/2例3如图25-8所示是计算机中“扫雷“游戏的画面,在个小方格的正方形雷区中,随机埋藏着颗地雷,每个小方格内最多只能藏颗地雷。小王在游戏开始时随机地踩中一个方格,踩中后出现了如图所示的情况,我们把与标号的方格相邻的方格记为区域(画线部分),区域外的部分记为区域,数字表示在区域中有颗地雷,那么第二步应该踩区域还是区域?分析:第二步应该踩在遇到地雷小的概率,所以现在关键求出在区域、区域的概率并比较。解:(1)区域的方格共有个,标号表示在这个方格中有个方格各藏颗地雷,因此,踩区域的任一方格,遇到地雷的概率是。(2)区域中共有个小方格,其中有个方格内各藏颗地雷。因此,踩区域的任一方格,遇到地雷的概率是。由于,所以踩区域遇到地雷的可能性大于踩区域遇到地雷的可能性,因而第二步应踩区域。三、巩固练习教材练习,,练习\n五、归纳小结本节课应用列举法求概率。六、布置作业1、教材综合运用拓广探索教学反思25.2用列举法求概率(第二课时)教学目标:1.理解“包含两步,并且每一步的结果为有限多个情形”的意义。2.会用列表的方法求出:包含两步,并且每一步的结果为有限多个情形,这样的试验出现的所有可能结果。3.体验数学方法的多样性灵活性,提高解题能力。教学重点:正确理解和区分一次试验中包含两步的试验。教学难点:当可能出现的结果很多时,简洁地用列表法求出所有可能结果。一、比较,区别出示两个问题:1.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出1个球,共有几种可能的结果?2.一个布袋中有两个白球和两个黄球,质地和大小无区别,每次摸出2个球,这样共有几种可能的结果?要求学生讨论上述两个问题的区别,区别在于这两个问题的每次试验(摸球)中的元素不一样。二、问题解决1.例1教科书第150页例4。要求学生思考掷两枚硬币产生的所有可能结果。学生可能会认为结果只有:两个都为正面,一个正面一个反面和两个都是反面这样3种情形,要讲清这种想法的错误原因。列出了所有可能结果后,问题容易解决。或采用列表的方法,如:BA正反正正正正反反反正反反让学生初步感悟列表法的优越性。2.问题:“同时掷两枚硬币”,与“先后两次掷一枚硬币”,这两种试验的所有可能结果一样吗?同时掷两枚硬币与先后两次掷一枚硬币有时候是有区别的。比如在先后投掷的时候,就会有这样的问题:先出现正面后出现反面的概率是多少?这与先后顺序有关。同时投掷两枚硬币时就不会出现这样的问题。3.课内练习:书本P151的练习。三、小结1.本节课的例题,每次试验有什么特点?\n2.用列表法求出所有可能的结果时,要注意表格的设计,做到使各种可能结果既不重复也不遗漏。四、布置作业:教学反思:25.2用列举法求概率(第三课时)教学目标:1.进一步理解有限等可能性事件概率的意义。2.会用树形图求出一次试验中涉及3个或更多个因素时,不重不漏地求出所有可能的结果,从而正确地计算问题的概率。3.进一步提高分类的数学思想方法,掌握有关数学技能(树形图)。教学重点:正确鉴别一次试验中是否涉及3个或更多个因素。教学难点;用树形图法求出所有可能的结果。一、解决问题,提高能力例1同时掷两个质地均匀的骰子,计算下列事件的概率:(1)两个骰子的点子数相同;(2)两个骰子的点子数的和是9;(3)至少有一个骰子的点数为2。分析:由于每个骰子有6种可能结果,所以2个骰子出现的可能结果就会有很多,我们用怎样的方法才能既不重复又不遗漏地求出所有可能的结果呢?这个问题要让学生充分发表意见,在次基础上再使学生认识到列表法可以清楚地列出所有可能的结果,体会其优越性。列出表格。也可用树形图法。其实,求出所有可能的结果的方法不止是列表法,还有树形图法也是有效的方法,要让学生体验它们各自的特点,关键是对所有可能结果要做到:既不重复也不遗漏。板书解答过程。思考:教科书第152页的思考题。例2教科书第152页例6。分析:弄清题意后,先让学生思考从3个口袋中每次各随机地取出一个球,共3个球,这就是说每一次试验涉及到3个因素,这样的取法共有多少种呢?你打算用什么方法求得?在学生充分思考和交流的前提下,老师介绍树形图的方法。第一步可能产生的结果为A和B,两者出现的可能性相同且不分先后,写在第一行。第二步可能产生的结果有C、D和E,三者出现的可能性相同且不分先后,从A和B分别画出三个分支,在分支下的第二行分别写上C、D和E。第三步可能产生的结果有两个H和I,两者出现的可能性相同且不分先后,从C、D和E分别画出两个分支,在分支下的第三行分别写上H和I。(如果有更多的步骤可依上继续)第四步按竖向把各种可能的结果竖着写在下面,就得到了所有可能的结果的总数。再找出符合要求的种数,就可以利用概率和意义计算概率了。教师要详细地讲解以上各步的操作方法。写出解答过程。问:此题可以用列表法求出所有可能吗?小结:教科书第153页左边的结论。思考:教科书第153页的思考题。二、练习,巩固技能教科书第154页练习。练习1是每次试验涉及2个因素的问题,共有36种可能的结果;练习2是每次试验涉及3个因素的问题,共有27种可能的结果。尽管这2个问题可能的结果都比较多,但用树形图的方法并不难求得,重要的是要让学生正确把握题意,鉴别每次试验涉及的因素以及这些因素的顺序。二、单元小结\n问题:(要求学生思考和讨论)1.本单元学习的概率问题有什么特点?2.为了正确地求出所求的概率,我们要求出各种可能的结果,那么通常是用什么方法求出各种可能的结果呢?特点:一次试验中可能出现的结果是有限多个,各种结果发生的可能性是相等的。通常可用列表法求得各种可能结果,具体有直接分析列出可能结果,列表法和树形图法。一、提高练习教科书第155页习题25.2第9题。这是一道正确理解概率意义的问题,在学生深入思考的基础上教师要着重分析解题的思路。四、布置作业:教学反思25.3.1利用频率估计概率教学目标:知识与技能:1、当事件的试验结果不是有限个或结果发生的可能性不相等时,要用频率来估计概率。2、通过试验,理解当试验次数较大时试验频率稳定于理论概率,进一步发展概率观念。过程与方法:通过实验及分析试验结果、收集数据、处理数据、得出结论的试验过程,体会频率与概率的联系与区别,发展学生根据频率的集中趋势估计概率的能力。情感态度与价值观:1、通过具体情境使学生体会到概率是描述不确定事件规律的有效数学模型,在解决问题中学会用数学的思维方式思考生活中的实际问题的习惯。2、在活动中进一步发展合作交流的意识和能力。教学重点:理解当试验次数较大时,试验频率稳定于理论概率。教学难点:对概率的理解。设计教学程序:一、问题情境:妈妈有一张马戏团门票,小明、小华和小红都想去看演出,怎么办呢?妈妈想用掷骰子的办法决定,你觉得这样公平吗?说说你的理由?但由于一时找不到骰子,妈妈决定用一个小长方体(涂有三种颜色,对面的颜色相同)来代替你觉得这样公平吗?选哪种颜色获得门票的概率更大?说说你的理由!二、合作游戏:1、实验:二人一组,一人抛掷小长方体,一人负责记录,合作完成30次试验,并完成下面表格一的填写和有关结论的得出。表格一:颜色红绿蓝频数\n频率概率问题:(1)你认为哪种情况的概率最大?_________________红色________________________________________.(2)当试验次数较小时,比较三种情况的频率,你能得出什么结论?当试验次数较小时,统计出的频率不能估计概率.2、累计收集数据:二人一组,任选自己喜欢的颜色分别汇总其中前两组(60次)、前三组(90次)、前四组(120次)、五组(150次)。。。。。的试验数据,完成表格二的填写,并绘制出相应的折线统计图和有关结论的得出。表格二:试验次数306090120150180210240……频率试验次数306090120150180……问题:当试验次数较大时,比较数字色的频率与其相应的概率,你能得到什么结论?_________________________________________________.4、得出试验结论。三、随堂练习。书本P158页“柑橘的损坏率”填写表25--6四、拓展提升:解决问题21、柑橘的损坏率是多少?2、到达目的地后完好的柑橘还有多少千克?3、把损坏的柑橘也算在内,到达目的地后柑橘的成本约是多少元?4、设每千克定价为x元,则可以得到的方程是?五、课堂小结:畅所欲言。六、课内拓展:同步练P95页第8题教学反思25.3.2利用频率估计概率教学目标:\n知识与技能:了解模拟实验在求一个实际问题中的作用,进一步提高用数学知识解决实际问题的能力。过程与方法:初步学会对一个简单的问题提出一种可行的模拟实验。情感态度与价值观:1、提高学生动手能力,加强集体合作意识,丰富知识面,激发学习兴趣。2、渗透数形结合思想和分类思想。教学重点:理解用模拟实验解决实际问题的合理性。教学难点:会对简单问题提出模拟实验策略。设计教学程序:一、问题情境:小明参加夏令营,一天夜里熄灯了,伸手不见五指,想到明天去八达岭长城天不亮就出发,想把袜子准备好,而现在又不能开灯。袋子里有尺码相同的3双黑袜子和1双白袜子,混放在一起,只能摸黑去拿出2只。同学们能否求出摸出的2只恰好是一双的可能性?问:同学们能否通过实验估计它们恰好是一双的可能性?如果手边没有袜子应该怎么办?问:在摸袜子的实验中,如果用6个红色玻璃珠,另外还找了两张扑克牌,可以混在一起做实验吗?答:不可以,用不同的替代物混在一起,大大地改变了实验条件,所以结果是不准确的。注意:实验必须在相同的条件下进行,才能得到预期的结果;替代物的选择必须是合理、简单的。问:假设用小球模拟问题的实验过程中,用6个黑球代替3双黑袜子,用2个白球代替1双白袜子:(1)有一次摸出了2个白球,但之后一直忘了把它们放回去,这会影响实验结果吗?答:有影响,如果不放回,就不是3双黑袜子和1双白袜子的实验,而是中途变成了3双黑袜子实验,这两种实验结果是不一样的。问:(2)如果不小心把颜色弄错了,用了2个黑球和6个白球进行实验,结果会怎样?答:小球的颜色不影响恰好是一双的可能性大小二、问题3:一个学习小组有6名男生3名女生。老师要从小组的学生中先后随机地抽取3人参加几项测试,并且每名学生都可被重复抽取。你能设计一种实验来估计“被抽取的3人中有2名男生1名女生”的概率的吗?下面的表中给出了一些模拟实验的方法,你觉得这些方法合理吗?若不合理请说明理由:需要研究的问题用替代物模拟实验的方法用什么实物一枚硬币一枚图钉怎样实验抛起后落地抛起后落地考虑哪一事件出现的机会正面朝上的机会钉尖朝上的机会需要研究的问题用替代物模拟实验的方法用什么实物3个红球2个黑球3个男生名字2个女生名字\n怎样实验摸出1个球摸出1个名字考虑哪一事件出现的机会恰好摸出红球的机会恰好摸出男生名字的机会三、随堂练习。(1)在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是()A.一颗均匀的骰子B.瓶盖C.图钉D.两张扑克牌(1张黑桃,1张红桃)(2)不透明的袋中装有3个大小相同的小球,其中2个为白色球,另一个为红色球,每次从袋中摸出一个球,然后放回搅匀再摸,研究恰好摸出红色小球的机会,以下替代实验方法不可行的是()A.用3张卡片,分别写上“白”、“红”,“红”然后反复抽取B.用3张卡片,分别写上“白”、“白”、“红”,然后反复抽取C.用一枚硬币,正面表示“白”,反面表示“红”,然后反复抽取D.用一个转盘,盘面分:白、红两种颜色,其中白色盘面的面积为红色的2倍,然后反复转动转盘四、课堂小结:畅所欲言。教学反思25.4课题学习键盘上字母的排列规律教学目标:知识与技能:结合具体情境,初步感受统计推断的合理性,进一步体会概率与统计之间的联系及概率的广泛应用。过程与方法:经历试验、统计等活动,在活动中发展学生的合作交流的意识和能力。情感态度与价值观:通过具体情境使学生养成乐于接触社会环境中的数学信息,乐于用数学思维去思考生活中的问题。教学重点:进一步深刻领会用试验频率来估算概率的方法。教学难点:对实际问题的分析,并体会用试验步骤来估算概率的方法。教具学具准备:英语教科书,键盘等设计教学程序:一、问题的提出:计算机键盘上的英文字母为什么没有按照字母表顺序从A、B。。。到Z排列,如果那样不是更便于记忆吗?二、合作活动1.收集和分析数据:统计英语教科书中任一部分中26个字母及空格出现的频率(分组合作完成,每人找其中一个字母的出现频率)(1)统计每一个字母出现的次数和所有字母出现的总次数。\n(1)计算字母出现的频率m/n(2)将字母按出现的频率从小到大的顺序排列出。(学生按所查字母出现频率从大到小回答,老师在黑板上写出)出现频率最高的是______,出现频率较低的字母有______________________2.结论的应用与解释:左手右手小无中食食中无小上QWERTYUIOP中ASDFGHJKL;下ZXCVBNM,。/?问:空格键为什么要设计在键盘的下方正中央位置?出现频率高的字母一般放在哪里?出现频率低的字母一般放在哪里?为什么?答:键盘上字母的设计,既考虑手指移动的灵活特征,又考虑到各个键的使用频率大小。三、随堂练习。汉字使用频率及手机中文输入法的顺序。四、课堂小结:畅所欲言。五、课外拓展提升:在计算机中任选一篇WORD文档,借助office的查找功能及字数统计功能,统计出某个同音汉字的出现次数,进行分析,按出现频率从大到小排列,然后与拼音输入法中的排列顺序进行比较,结果一致吗?教学反思26.1 二次函数(1)教学目标:\n(1)能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。(2)注重学生参与,联系实际,丰富学生的感性认识,培养学生的良好的学习习惯重点难点:能够根据实际问题,熟练地列出二次函数关系式,并求出函数的自变量的取值范围。教学过程:一、试一试1.设矩形花圃的垂直于墙的一边AB的长为xm,先取x的一些值,算出矩形的另一边BC的长,进而得出矩形的面积ym2.试将计算结果填写在下表的空格中,AB长x(m)123456789BC长(m)12面积y(m2)482.x的值是否可以任意取?有限定范围吗?3.我们发现,当AB的长(x)确定后,矩形的面积(y)也随之确定,y是x的函数,试写出这个函数的关系式,对于1.,可让学生根据表中给出的AB的长,填出相应的BC的长和面积,然后引导学生观察表格中数据的变化情况,提出问题:(1)从所填表格中,你能发现什么?(2)对前面提出的问题的解答能作出什么猜想?让学生思考、交流、发表意见,达成共识:当AB的长为5cm,BC的长为10m时,围成的矩形面积最大;最大面积为50m2。对于2,可让学生分组讨论、交流,然后各组派代表发表意见。形成共识,x的值不可以任意取,有限定范围,其范围是0<x<10。对于3,教师可提出问题,(1)当AB=xm时,BC长等于多少m?(2)面积y等于多少?并指出y=x(20-2x)(0<x<10)就是所求的函数关系式.二、提出问题某商店将每件进价为8元的某种商品按每件10元出售,一天可销出约100件.该店想通过降低售价、增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加10件。将这种商品的售价降低多少时,能使销售利润最大?在这个问题中,可提出如下问题供学生思考并回答:1.商品的利润与售价、进价以及销售量之间有什么关系?[利润=(售价-进价)×销售量]2.如果不降低售价,该商品每件利润是多少元?一天总的利润是多少元?[10-8=2(元),(10-8)×100=200(元)]3.若每件商品降价x元,则每件商品的利润是多少元?一天可销售约多少件商品?[(10-8-x);(100+100x)]4.x的值是否可以任意取?如果不能任意取,请求出它的范围,[x的值不能任意取,其范围是0≤x≤2]5.若设该商品每天的利润为y元,求y与x的函数关系式。[y=(10-8-x)(100+100x)(0≤x≤2)]将函数关系式y=x(20-2x)(0<x<10=化为:y=-2x2+20x(0<x<10)……………………………(1)将函数关系式y=(10-8-x)(100+100x)(0≤x≤2)化为:y=-100x2+100x+20D(0≤x≤2)……………………(2)三、观察;概括1.教师引导学生观察函数关系式(1)和(2),提出以下问题让学生思考回答;(1)函数关系式(1)和(2)的自变量各有几个?\n(各有1个)(2)多项式-2x2+20和-100x2+100x+200分别是几次多项式?(分别是二次多项式)(3)函数关系式(1)和(2)有什么共同特点?(都是用自变量的二次多项式来表示的)(4)本章导图中的问题以及P1页的问题2有什么共同特点?让学生讨论、交流,发表意见,归结为:自变量x为何值时,函数y取得最大值。2.二次函数定义:形如y=ax2+bx+c(a、b、、c是常数,a≠0)的函数叫做x的二次函数,a叫做二次函数的系数,b叫做一次项的系数,c叫作常数项.四、课堂练习1.(口答)下列函数中,哪些是二次函数?(1)y=5x+1(2)y=4x2-1(3)y=2x3-3x2(4)y=5x4-3x+12.P3练习第1,2题。五、小结1.请叙述二次函数的定义.2,许多实际问题可以转化为二次函数来解决,请你联系生活实际,编一道二次函数应用题,并写出函数关系式。六、作业:略26.1 二次函数(2)教学目标:1、使学生会用描点法画出y=ax2的图象,理解抛物线的有关概念。2、使学生经历、探索二次函数y=ax2图象性质的过程,培养学生观察、思考、归纳的良好思维习惯重点难点:重点:使学生理解抛物线的有关概念,会用描点法画出二次函数y=ax2的图象是教学的重点。难点:用描点法画出二次函数y=ax2的图象以及探索二次函数性质是教学的难点。教学过程:一、提出问题1,同学们可以回想一下,一次函数的性质是如何研究的?(先画出一次函数的图象,然后观察、分析、归纳得到一次函数的性质)2.我们能否类比研究一次函数性质方法来研究二次函数的性质呢?如果可以,应先研究什么?(可以用研究一次函数性质的方法来研究二次函数的性质,应先研究二次函数的图象)3.一次函数的图象是什么?二次函数的图象是什么?二、范例例1、画二次函数y=ax2的图象。解:(1)列表:在x的取值范围内列出函数对应值表:x…-3-2-10123…y…9410149…(2)在直角坐标系中描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点\n(3)连线:用光滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。提问:观察这个函数的图象,它有什么特点?让学生观察,思考、讨论、交流,归结为:它有一条对称轴,且对称轴和图象有一点交点。抛物线概念:像这样的曲线通常叫做抛物线。顶点概念:抛物线与它的对称轴的交点叫做抛物线的顶点.三、做一做1.在同一直角坐标系中,画出函数y=x2与y=-x2的图象,观察并比较两个图象,你发现有什么共同点?又有什么区别?2.在同一直角坐标系中,画出函数y=2x2与y=-2x2的图象,观察并比较这两个函数的图象,你能发现什么?3.将所画的四个函数的图象作比较,你又能发现什么?对于1,在学生画函数图象的同时,教师要指导中下水平的学生,讲评时,要引导学生讨论选几个点比较合适以及如何选点。两个函数图象的共同点以及它们的区别,可分组讨论。交流,让学生发表不同的意见,达成共识,两个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0),区别在于函数y=x2的图象开口向上,函数y=-x2的图象开口向下。对于2,教师要继续巡视,指导学生画函数图象,两个函数的图象的特点;教师可引导学生类比1得出。对于3,教师可引导学生从1的共同点和2的发现中得到结论:四个函数的图象都是抛物线,都关于y轴对称,它的顶点坐标都是(0,0).四、归纳、概括函数y=x2、y=-x2、y=2x2、y=-2x2是函数y=ax2的特例,由函数y=x2、y=-x2、y=2x2、y=-2x2的图象的共同特点,可猜想:函数y=ax2的图象是一条________,它关于______对称,它的顶点坐标是______。如果要更细致地研究函数y=ax2图象的特点和性质,应如何分类?为什么?让学生观察y=x2、y=2x2的图象,填空;当a>0时,抛物线y=ax2开口______,在对称轴的左边,曲线自左向右______;在对称轴的右边,曲线自左向右______,______是抛物线上位置最低的点。图象的这些特点反映了函数的什么性质?先让学生观察下图,回答以下问题;(1)XA、XB大小关系如何?是否都小于0?(2)yA、yB大小关系如何?(3)XC、XD大小关系如何?是否都大于0?(4)yC、yD大小关系如何?(XAyB;XC0,XD>0,yCO时,函数值y随X的增大而______;当X=______时,函数值y=ax2(a>0)取得最小值,最小值y=______以上结论就是当a>0时,函数y=ax2的性质。思考以下问题:观察函数y=-x2、y=-2x2的图象,试作出类似的概括,当aO时,函数值y随x的增大而减小,当x=0时,函数值y=ax2取得最大值,最大值是y=0。五、课堂练习:P6练习1、2、3、4。六、作业:1.如何画出函数y=ax2的图象? 2.函数y=ax2具有哪些性质? 3.谈谈你对本节课学习的体会。26.1二次函数(3)教学目标:1、使学生能利用描点法正确作出函数y=ax2+b的图象。2、让学生经历二次函数y=ax2+bx+c性质探究的过程,理解二次函数y=ax2+b的性质及它与函数y=ax2的关系。重点难点:会用描点法画出二次函数y=ax2+b的图象,理解二次函数y=ax2+b的性质,理解函数y=ax2+b与函数y=ax2的相互关系是教学重点。正确理解二次函数y=ax2+b的性质,理解抛物线y=ax2+b与抛物线y=ax2的关系是教学的难点。教学过程:一、提出问题1.二次函数y=2x2的图象是____,它的开口向_____,顶点坐标是_____;对称轴是______,在对称轴的左侧,y随x的增大而______,在对称轴的右侧,y随x的增大而______,函数y=ax2与x=______时,取最______值,其最______值是______。2.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?二、分析问题,解决问题问题1:对于前面提出的第2个问题,你将采取什么方法加以研究?(画出函数y=2x2和函数y=2x2的图象,并加以比较)问题2,你能在同一直角坐标系中,画出函数y=2x2与y=2x2+1的图象吗?教学要点1.先让学生回顾二次函数画图的三个步骤,按照画图步骤画出函数y=2x2的图象。2.教师说明为什么两个函数自变量x可以取同一数值,为什么不必单独列出函数y=2x2+1的对应值表,并让学生画出函数y=2x2+1的图象.3.教师写出解题过程,同学生所画图象进行比较。解:(1)列表:x…-3-2-10123…y=x2…188202818…y=x2+1…1993l3919…(2)描点:用表里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑曲线顺次连接各点,得到函数y=2x2和y=2x2+1的图象。(图象略)\n问题3:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之间的位置又有什么关系?教师引导学生观察上表,当x依次取-3,-2,-1,0,1,2,3时,两个函数的函数值之间有什么关系,由此让学生归纳得到,当自变量x取同一数值时,函数y=2x2+1的函数值都比函数y=2x2的函数值大1。教师引导学生观察函数y=2x2+1和y=2x2的图象,先研究点(-1,2)和点(-1,3)、点(0,0)和点(0,1)、点(1,2)和点(1,3)位置关系,让学生归纳得到:反映在图象上,函数y=2x2+1的图象上的点都是由函数y=2x2的图象上的相应点向上移动了一个单位。问题4:函数y=2x2+1和y=2x2的图象有什么联系?由问题3的探索,可以得到结论:函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的。问题5:现在你能回答前面提出的第2个问题了吗?让学生观察两个函数图象,说出函数y=2x2+1与y=2x2的图象开口方向、对称轴相同,但顶点坐标不同,函数y=2x2的图象的顶点坐标是(0,0),而函数y=2x2+1的图象的顶点坐标是(0,1)。问题6:你能由函数y=2x2的性质,得到函数y=2x2+1的一些性质吗?完成填空:当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大,当x______时,函数取得最______值,最______值y=______.以上就是函数y=2x2+1的性质。三、做一做问题7:先在同一直角坐标系中画出函数y=2x2-2与函数y=2x2的图象,再作比较,说说它们有什么联系和区别?教学要点1.在学生画函数图象的同时,教师巡视指导;2.让学生发表意见,归纳为:函数y=2x2-2与函数y=2x2的图象的开口方向、对称轴相同,但顶点坐标不同。函数y=2x2-2的图象可以看成是将函数y=2x2的图象向下平移两个单位得到的。问题8:你能说出函数y=2x2-2的图象的开口方向,对称轴和顶点坐标,以及这个函数的性质吗?教学要点1.让学生口答,函数y=2x2-2的图象的开口向上,对称轴为y轴,顶点坐标是(0,-2);2.分组讨论这个函数的性质,各组选派一名代表发言,达成共识:当x<0时,函数值y随x的增大而减小;当x>0时,函数值y随x的增大而增大,当x=0时,函数取得最小值,最小值y=-2。问题9:在同一直角坐标系中。函数y=-x2+2图象与函数y=-x2的图象有什么关系?要求学生能够画出函数y=-x2与函数y=-x2+2的草图,由草图观察得出结论:函数y=-1/3x2+2的图象与函数y=-x2的图象的开口方向、对称轴相同,但顶点坐标不同,函数y=-x2+2的图象可以看成将函数y=-x2的图象向上平移两个单位得到的。问题10:你能说出函数y=-x2+2的图象的开口方向、对称轴和顶点坐标吗?\n[函数y=-x2+2的图象的开口向下,对称轴为y轴,顶点坐标是(0,2)]问题11:这个函数图象有哪些性质?让学生观察函数y=-x2+2的图象得出性质:当x<0时,函数值y随x的增大而增大;当x>0时,函数值y随x的增大而减小;当x=0时,函数取得最大值,最大值y=2。四、练习: P9练习1、2、3。五、小结1.在同一直角坐标系中,函数y=ax2+k的图象与函数y=ax2的图象具有什么关系?2.你能说出函数y=ax2+k具有哪些性质?六、作业:1.P19习题26.21.(1) 2.选用课时作业优化设计.第一课时作业优化设计1.分别在同一直角坐标系中,画出下列各组两个二次函数的图象。(1)y=-2x2与y=-2x2-2;(2)y=3x2+1与y=3x2-1。2.在同一直角坐标系内画出下列二次函数的图象,y=x2,y=x2+2,y=x2-2观察三条抛物线的相互关系,并分别指出它们的开口方向及对称轴、顶点的位置。你能说出抛物线y=x2+k的开口方向及对称轴、顶点的位置吗?3.根据上题的结果,试说明:分别通过怎样的平移,可以由抛物线y=x2得到抛物线y=x2+2和y=x2-2?4.试说出函数y=x2,y=x2+2,y=x2-2的图象所具有的共同性质。26.1 二次函数(4)教学目标:1.使学生能利用描点法画出二次函数y=a(x—h)2的图象。2.让学生经历二次函数y=a(x-h)2性质探究的过程,理解函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系。重点难点:重点:会用描点法画出二次函数y=a(x-h)2的图象,理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的关系是教学的重点。难点:理解二次函数y=a(x-h)2的性质,理解二次函数y=a(x-h)2的图象与二次函数y=ax2的图象的相互关系是教学的难点。教学过程:一、提出问题1.在同一直角坐标系内,画出二次函数y=-x2,y=-x2-1的图象,并回答:(1)两条抛物线的位置关系。(2)分别说出它们的对称轴、开口方向和顶点坐标。\n(3)说出它们所具有的公共性质。2.二次函数y=2(x-1)2的图象与二次函数y=2x2的图象的开口方向、对称轴以及顶点坐标相同吗?这两个函数的图象之间有什么关系?二、分析问题,解决问题问题1:你将用什么方法来研究上面提出的问题?(画出二次函数y=2(x-1)2和二次函数y=2x2的图象,并加以观察)问题2:你能在同一直角坐标系中,画出二次函数y=2x2与y=2(x-1)2的图象吗?教学要点1.让学生完成下表填空。x…-3-2-10123…y=2x2y=2(x-1)22.让学生在直角坐标系中画出图来:3.教师巡视、指导。问题3:现在你能回答前面提出的问题吗?教学要点1.教师引导学生观察画出的两个函数图象.根据所画出的图象,完成以下填空:开口方向对称轴顶点坐标y=2x2y=2(x-1)22.让学生分组讨论,交流合作,各组选派代表发表意见,达成共识:函数y=2(x-1)2与y=2x2的图象、开口方向相同、对称轴和顶点坐标不同;函数y=2(x一1)2的图象可以看作是函数y=2x2的图象向右平移1个单位得到的,它的对称轴是直线x=1,顶点坐标是(1,0)。问题4:你可以由函数y=2x2的性质,得到函数y=2(x-1)2的性质吗?教学要点1.教师引导学生回顾二次函数y=2x2的性质,并观察二次函数y=2(x-1)2的图象;2.让学生完成以下填空:当x______时,函数值y随x的增大而减小;当x______时,函数值y随x的增大而增大;当x=______时,函数取得最______值y=______。三、做一做问题5:你能在同一直角坐标系中画出函数y=2(x+1)2与函数y=2x2的图象,并比较它们的联系和区别吗?教学要点1.在学生画函数图象的同时,教师巡视、指导;2.请两位同学上台板演,教师讲评;3.让学生发表不同的意见,归结为:函数y=2(x+1)2与函数y=2x2的图象开口方向相同,但顶点坐标和对称轴不同;函数y=2(x+1)2的图象可以看作是将函数y=2x2的图象向左平移1个单位得到的。它的对称轴是直线x=-1,顶点坐标是(-1,0)。问题6;你能由函数y=2x2的性质,得到函数y=2(x+1)2的性质吗?教学要点让学生讨论、交流,举手发言,达成共识:当x<-1时,函数值y随x的增大而减小;当x>-1时,函数值y随x的增大而增大;当x=一1时,函数取得最小值,最小值y=0。问题7:在同一直角坐标系中,函数y=-(x+2)2图象与函数y=-x2的图象有何关系?(函数y=-(x+2)2的图象可以看作是将函数y=-x2的图象向左平移2个单位得到的。)\n问题8:你能说出函数y=-(x+2)2图象的开口方向、对称轴和顶点坐标吗?(函数y=-(x十2)2的图象开口向下,对称轴是直线x=-2,顶点坐标是(-2,0))。问题9:你能得到函数y=(x+2)2的性质吗?教学要点让学生讨论、交流,发表意见,归结为:当x<-2时,函数值y随x的增大而增大;当x>-2时,函数值y随工的增大而减小;当x=-2时,函数取得最大值,最大值y=0。四、课堂练习: P11练习1、2、3。五、小结:1.在同一直角坐标系中,函数y=a(x-h)2的图象与函数y=ax2的图象有什么联系和区别?2.你能说出函数y=a(x-h)2图象的性质吗?3.谈谈本节课的收获和体会。六、作业1.P19习题26.21(2)。2.选用课时作业优化设计。第二课时作业优化设计1.在同一直角坐标系中,画出下列各组两个二次函数的图象。(1)y=4x2与y=4(x-3)2(2)y=(x+1)2与y=(x-1)22.已知函数y=-x2,y=-(x+2)2和y=-(x-2)2。(1)在同一直角坐标中画出它们的函数图象;(2)分别说出各个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由函数y=-1/4x2的图象得到函数y=-(x+2)2和函数y=-(x-2)2的图象?(4)分别说出各个函数的性质。3.已知函数y=4x2,y=4(x+1)2和y=4(x-1)2。(1)在同一直角坐标系中画出它们的图象;(2)分别说出各个函数图象的开口方向,对称轴、顶点坐标;(3)试说明:分别通过怎样的平移,可以由函数y=4x2的图象得到函数y=4(x+1)2和函数y=4(x-1)2的图象,(4)分别说出各个函数的性质.4.二次函数y=a(x-h)2的最大值或最小值与二次函数图象的顶点有什么关系?26.1 二次函数(5)教学目标:1.使学生理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系。\n2.会确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标。3.让学生经历函数y=a(x-h)2+k性质的探索过程,理解函数y=a(x-h)2+k的性质。重点难点:重点:确定函数y=a(x-h)2+k的图象的开口方向、对称轴和顶点坐标,理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系,理解函数y=a(x-h)2+k的性质是教学的重点。难点:正确理解函数y=a(x-h)2+k的图象与函数y=ax2的图象之间的关系以及函数y=a(x-h)2+k的性质是教学的难点。教学过程:一、提出问题1.函数y=2x2+1的图象与函数y=2x2的图象有什么关系?(函数y=2x2+1的图象可以看成是将函数y=2x2的图象向上平移一个单位得到的)2.函数y=2(x-1)2的图象与函数y=2x2的.图象有什么关系?(函数y=2(x-1)2的图象可以看成是将函数y=2x2的图象向右平移1个单位得到的,见P10图26.2.3)3.函数y=2(x-1)2+1图象与函数y=2(x-1)2图象有什么关系?函数y=2(x-1)2+1有哪些性质?二、试一试你能填写下表吗?y=2x2 向右平移的图象 1个单位y=2(x-1)2向上平移1个单位y=2(x-1)2+1的图象开口方向向上对称轴y轴顶点(0,0)问题2:从上表中,你能分别找到函数y=2(x-1)2+1与函数y=2(x-1)2、y=2x2图象的关系吗?问题3:你能发现函数y=2(x-1)2+1有哪些性质?对于问题2和问题3,教师可组织学生分组讨论,互相交流,让各组代表发言,达成共识;函数y=2(x-1)2+1的图象可以看成是将函数y=2(x-1)2的图象向上平称1个单位得到的,也可以看成是将函数y=2x2的图象向右平移1个单位再向上平移1个单位得到的。当x<1时,函数值y随x的增大而减小,当x>1时,函数值y随x的增大而增大;当x=1时,函数取得最小值,最小值y=1。三、做一做问题4:在图26.2.3中,你能再画出函数y=2(x-1)2-2的图象,并将它与函数y=2(x-1)2的图象作比较吗?教学要点1.在学生画函数图象时,教师巡视指导;2.对“比较”两字做出解释,然后让学生进行比较。问题5:你能说出函数y=-(x-1)2+2的图象与函数y=-x2的图象的关系,由此进一步说出这个函数图象的开口方向、对称轴和顶点坐标吗?(函数y=-(x-1)2+2的图象可以看成是将函数y=-x2的图象向右平移一个单位再向上平移2个单位得到的,其开口向下,对称轴为直线x=1,顶点坐标是(1,2)四、课堂练习:P13练习1、2、3、4。对于练习第4题,教师必须提示:将-3x2-6x+8配方,化为练习第3题中的形式,即\ny=-3x2-6x+8=-3(x2+2x)+8=-3(x2+2x+1-1)+8=-3(x+1)2+11五、小结1.通过本节课的学习,你学到了哪些知识?还存在什么困惑?2.谈谈你的学习体会。六、作业:1.巳知函数y=-x2、y=-x2-1和y=-(x+1)2-1(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明:分别通过怎样的平移,可以由抛物线y=-x2得到抛物线y=-x2-1和抛物线y=(x+1)2-1;(4)试讨论函数y=-(x+1)2-1的性质。2.已知函数y=6x2、y=6(x-3)2+3和y=6(x+3)2-3。(1)在同一直角坐标系中画出三个函数的图象;(2)分别说出这三个函数图象的开口方向、对称轴和顶点坐标;(3)试说明,分别通过怎样的平移,可以由抛物线y=6x2得到抛物线y=6(x-3)2+3和抛物线y=6(x+3)2-3;(4)试讨沦函数y=6(x+3)2-3的性质;3.不画图象,直接说出函数y=-2x2-5x+7的图象的开口方向、对称轴和顶点坐标。4.函数y=2(x-1)2+k的图象与函数y=2x2的图象有什么关系?26.1 二次函数(6)教学目标:1.使学生掌握用描点法画出函数y=ax2+bx+c的图象。2.使学生掌握用图象或通过配方确定抛物线的开口方向、对称轴和顶点坐标。3.让学生经历探索二次函数y=ax2+bx+c的图象的开口方向、对称轴和顶点坐标以及性质的过程,理解二次函数y=ax2+bx+c的性质。重点难点:重点:用描点法画出二次函数y=ax2+bx+c的图象和通过配方确定抛物线的对称轴、顶点坐标是教学的重点。难点:理解二次函数y=ax2+bx+c(a≠0)的性质以及它的对称轴(顶点坐标分别是x=-、(-,)是教学的难点。教学过程:一、提出问题1.你能说出函数y=-4(x-2)2+1图象的开口方向、对称轴和顶点坐标吗?(函数y=-4(x-2)2+1图象的开口向下,对称轴为直线x=2,顶点坐标是(2,1)。2.函数y=-4(x-2)2+1图象与函数y=-4x2的图象有什么关系?(函数y=-4(x-2)2+1的图象可以看成是将函数y=-4x2的图象向右平移2个单位再向上平移1个单位得到的)3.函数y=-4(x-2)2+1具有哪些性质?(当x<2时,函数值y随x的增大而增大,当x>2时,函数值y随x的增大而减小;当x=2时,函数取得最大值,最大值y=1)4.不画出图象,你能直接说出函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标吗?\n[因为y=-x2+x-=-(x-1)2-2,所以这个函数的图象开口向下,对称轴为直线x=1,顶点坐标为(1,-2)]5.你能画出函数y=-x2+x-的图象,并说明这个函数具有哪些性质吗?二、解决问题由以上第4个问题的解决,我们已经知道函数y=-x2+x-的图象的开口方向、对称轴和顶点坐标。根据这些特点,可以采用描点法作图的方法作出函数y=-x2+x-的图象,进而观察得到这个函数的性质。解:(1)列表:在x的取值范围内列出函数对应值表;x…-2-101234…y…-6-4-2-2-2-4-6…(2)描点:用表格里各组对应值作为点的坐标,在平面直角坐标系中描点。(3)连线:用光滑的曲线顺次连接各点,得到函数y=-x2+x-的图象。说明:(1)列表时,应根据对称轴是x=1,以1为中心,对称地选取自变量的值,求出相应的函数值。相应的函数值是相等的。(2)直角坐标系中x轴、y轴的长度单位可以任意定,且允许x轴、y轴选取的长度单位不同。所以要根据具体问题,选取适当的长度单位,使画出的图象美观。让学生观察函数图象,发表意见,互相补充,得到这个函数韵性质;当x<1时,函数值y随x的增大而增大;当x>1时,函数值y随x的增大而减小;当x=1时,函数取得最大值,最大值y=-2三、做一做1.请你按照上面的方法,画出函数y=x2-4x+10的图象,由图象你能发现这个函数具有哪些性质吗?教学要点(1)在学生画函数图象的同时,教师巡视、指导;(2)叫一位或两位同学板演,学生自纠,教师点评。2.通过配方变形,说出函数y=-2x2+8x-8的图象的开口方向、对称轴和顶点坐标,这个函数有最大值还是最小值?这个值是多少?教学要点(1)在学生做题时,教师巡视、指导;(2)让学生总结配方的方法;(3)让学生思考函数的最大值或最小值与函数图象的开口方向有什么关系?这个值与函数图象的顶点坐标有什么关系?以上讲的,都是给出一个具体的二次函数,来研究它的图象与性质。那么,对于任意一个二次函数y=ax2+bx+c(a≠0),如何确定它的图象的开口方向、对称轴和顶点坐标?你能把结果写出来吗?教师组织学生分组讨论,各组选派代表发言,全班交流,达成共识;y=ax2+bx+c=a(x2+x)+c=a[x2+x+()2-()2]+c=a[x2+x+()2]+c-=a(x+)2+\n当a>0时,开口向上,当a<0时,开口向下。对称轴是x=-b/2a,顶点坐标是(-,)四、课堂练习: P15练习第1、2、3题。五、小结: 通过本节课的学习,你学到了什么知识?有何体会?六、作业: 1.填空:(1)抛物线y=x2-2x+2的顶点坐标是_______;(2)抛物线y=2x2-2x-的开口_______,对称轴是_______;(3)抛物线y=-2x2-4x+8的开口_______,顶点坐标是_______;(4)抛物线y=-x2+2x+4的对称轴是_______;(5)二次函数y=ax2+4x+a的最大值是3,则a=_______.2.画出函数y=2x2-3x的图象,说明这个函数具有哪些性质。3.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=3x2+2x;(2)y=-x2-2x(3)y=-2x2+8x-8(4)y=x2-4x+34.求二次函数y=mx2+2mx+3(m>0)的图象的对称轴,并说出该函数具有哪些性质26.1 二次函数(7)教学目标:1.能根据实际问题列出函数关系式、2.使学生能根据问题的实际情况,确定函数自变量x的取值范围。3.通过建立二次函数的数学模型解决实际问题,培养学生分析问题、解决问题的能力,提高学生用数学的意识。重点难点:根据实际问题建立二次函数的数学模型,并确定二次函数自变量的范围,既是教学的重点又是难点。教学过程:一、复习旧知1.通过配方,写出下列抛物线的开口方向、对称轴和顶点坐标。(1)y=6x2+12x;(2)y=-4x2+8x-10[y=6(x+1)2-6,抛物线的开口向上,对称轴为x=-1,顶点坐标是(-1,-6);y=-4(x-1)2-6,抛物线开口向下,对称轴为x=1,顶点坐标是(1,-6))2.以上两个函数,哪个函数有最大值,哪个函数有最小值?说出两个函数的最大值、最小值分别是多少?(函数y=6x2+12x有最小值,最小值y=-6,函数y=-4x2+8x-10有最大值,最大值y=-6)二、范例有了前面所学的知识,现在就可以应用二次函数的知识去解决第2页提出的两个实际问题;\n例1、要用总长为20m的铁栏杆,一面靠墙,围成一个矩形的花圃,怎样围法才能使围成的花圃的面积最大?解:设矩形的宽AB为xm,则矩形的长BC为(20-2x)m,由于x>0,且20-2x>O,所以O<x<1O。围成的花圃面积y与x的函数关系式是y=x(20-2x)即y=-2x2+20x配方得y=-2(x-5)2+50所以当x=5时,函数取得最大值,最大值y=50。因为x=5时,满足O<x<1O,这时20-2x=10。所以应围成宽5m,长10m的矩形,才能使围成的花圃的面积最大。例2.某商店将每件进价8元的某种商品按每件10元出售,一天可销出约100件,该店想通过降低售价,增加销售量的办法来提高利润,经过市场调查,发现这种商品单价每降低0.1元,其销售量可增加约10件。将这种商品的售价降低多少时,能使销售利润最大?教学要点(1)学生阅读第2页问题2分析,(2)请同学们完成本题的解答;(3)教师巡视、指导;(4)教师给出解答过程:解:设每件商品降价x元(0≤x≤2),该商品每天的利润为y元。商品每天的利润y与x的函数关系式是:y=(10-x-8)(100+1OOx)即y=-1OOx2+1OOx+200配方得y=-100(x-)2+225因为x=时,满足0≤x≤2。所以当x=时,函数取得最大值,最大值y=225。所以将这种商品的售价降低÷元时,能使销售利润最大。例3。用6m长的铝合金型材做一个形状如图所示的矩形窗框。应做成长、宽各为多少时,才能使做成的窗框的透光面积最大?最大透光面积是多少?先思考解决以下问题:(1)若设做成的窗框的宽为xm,则长为多少m?(m)(2)根据实际情况,x有没有限制?若有跟制,请指出它的取值范围,并说明理由。让学生讨论、交流,达成共识:根据实际情况,应有x>0,且>0,即解不等式组,解这个不等式组,得到不等式组的解集为O<x<2,所以x的取值范围应该是0<x<2。(3)你能说出面积y与x的函数关系式吗?(y=x·,即y=-x2+3x)详细解答见P16。小结:让学生回顾解题过程,讨论、交流,归纳解题步骤:(1)先分析问题中的数量关系,列出函数关系式;(2)研究自变量的取值范围;(3)研究所得的函数;(4)检验x的取值是否在自变量的取值范围内,并求相关的值:(5)解决提出的实际问题。三、课堂练习:P16练习第1、2、3题。四、小结: 1.通过本节课的学习,你学到了什么知识?存在哪些困惑? 2.谈谈你的收获和体会。\n五、作业:1.求下列函数的最大值或最小值。(1)y=-x2-4x+2(2)y=x2-5x+(3)y=5x2+10(4)y=-2x2+8x2.已知一个矩形的周长是24cm。(1)写出矩形面积S与一边长a的函数关系式。(2)当a长多少时,S最大?3.填空:(1)二次函数y=x2+2x-5取最小值时,自变量x的值是______;(2)已知二次函数y=x2-6x+m的最小值为1,那么m的值是______。4.如图(1)所示,要建一个长方形的养鸡场,鸡场的一边靠墙,如果用50m长的篱笆围成中间有一道篱笆的养鸡场,没靠墙的篱笆长度为xm。(1)要使鸡场的面积最大,鸡场的长应为多少米?(2)如果中间有n(n是大于1的整数)道篱笆隔墙,要使鸡场面积最大,鸡场的长应为多少米?(3)比较(1)、(2)的结果,你能得到什么结论?5.如图(2),已知平行四边形ABCD的周长为8cm,∠B=30°,若边长AB=x(cm)。(1)写出□ABCD的面积y(cm2)与x的函数关系式,并求自变量x的取值范围。(2)当x取什么值时,y的值最大?并求最大值。(3).求二次函数的函数关系式26.2 用函数的观点看一元二次方程(1)教学目标:1.通过探索,使学生理解二次函数与一元二次方程、一元二次不等式之间的联系。2.使学生能够运用二次函数及其图象、性质解决实际问题,提高学生用数学的意识。3.进一步培养学生综合解题能力,渗透数形结合思想。重点难点:重点:使学生理解二次函数与一元二次方程、一元二次不等式之间的联系,能够运用二次函数及其图象、性质去解决实际问题是教学的重点。难点:进一步培养学生综合解题能力,渗透数形结合的思想是教学的难点.教学过程:\n一、引言在现实生活中,我们常常会遇到与二次函数及其图象有关的问题,如拱桥跨度、拱高计算等,利用二次函数的有关知识研究和解决这些问题,具有很现实的意义。本节课,请同学们共同研究,尝试解决以下几个问题。二、探索问题问题1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A处安装一个喷头向外喷水。连喷头在内,柱高为0.8m。水流在各个方向上沿形状相同的抛物线路径落下,如图(1)所示。根据设计图纸已知:如图(2)中所示直角坐标系中,水流喷出的高度y(m)与水平距离x(m)之间的函数关系式是y=-x2+2x+。(1)喷出的水流距水平面的最大高度是多少?(2)如果不计其他的因素,那么水池至少为多少时,才能使喷出的水流都落在水池内?教学要点1.让学生讨论、交流,如何将文学语言转化为数学语言,得出问题(1)就是求函数y=-x2+2x+最大值,问题(2)就是求如图(2)B点的横坐标;2.学生解答,教师巡视指导;3.让一两位同学板演,教师讲评。问题2:一个涵洞成抛物线形,它的截面如图(3)所示,现测得,当水面宽AB=1.6m时,涵洞顶点与水面的距离为2.4m。这时,离开水面1.5m处,涵洞宽ED是多少?是否会超过1m?教学要点1.教师分析:根据已知条件,要求ED的宽,只要求出FD的长度。在如图(3)的直角坐标系中,即只要求出D点的横坐标。因为点D在涵洞所成的抛物线上,又由已知条件可得到点D的纵坐标,所以利用抛物线的函数关系式可以进一步算出点D的横坐标。2.让学生完成解答,教师巡视指导。3.教师分析存在的问题,书写解答过程。解:以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,涵洞的横截面所成抛物线的顶点在原点,对称轴为y轴,开口向下,所以可设它的函数关系式为:y=ax2(a<0)(1)因为AB与y轴相交于C点,所以CB==0.8(m),又OC=2.4m,所以点B的坐标是(0.8,-2.4)。因为点B在抛物线上,将它的坐标代人(1),得-2.4=a×0.82所以:a=-因此,函数关系式是y=-x2(2)因为OF=1.5m,设FD=x1m(x1>0),则点D坐标为(x1,-1.5)。因为点D的坐标在抛物线上,将它的坐标代人(2),得-1.5=-x12x12=x1=±\nx1=-不符合假设,舍去,所以x1=。ED=2FD=2×x1=2×=≈×3.162≈1.26(m)所以涵洞ED是m,会超过1m。问题3:画出函数y=x2-x-3/4的图象,根据图象回答下列问题。(1)图象与x轴交点的坐标是什么;(2)当x取何值时,y=0?这里x的取值与方程x2-x-=0有什么关系?(3)你能从中得到什么启发?教学要点1.先让学生回顾函数y=ax2+bx+c图象的画法,按列表、描点、连线等步骤画出函数y=x2-x-的图象。2.教师巡视,与学生合作、交流。3.教师讲评,并画出函数图象,如图(4)所示。4.教师引导学生观察函数图象,回答(1)提出的问题,得到图象与x轴交点的坐标分别是(-,0)和(,0)。5.让学生完成(2)的解答。教师巡视指导并讲评。6.对于问题(3),教师组织学生分组讨论、交流,各组选派代表发表意见,全班交流,达成共识:从“形”的方面看,函数y=x2-x-的图象与x轴交点的横坐标,即为方程x2-x-=0的解;从“数”的方面看,当二次函数y=x2-x-的函数值为0时,相应的自变量的值即为方程x2-x-=0的解。更一般地,函数y=ax2+bx+c的图象与x轴交点的横坐标即为方程ax2+bx+c=0的解;当二次函数y=ax2+bx+c的函数值为0时,相应的自变量的值即为方程ax2+bx+c=0的解,这一结论反映了二次函数与一元二次方程的关系。三、试一试根据问题3的图象回答下列问题。(1)当x取何值时,y<0?当x取何值时,y>0?(当-<x<时,y<0;当x<-或x>时,y>0)(2)能否用含有x的不等式来描述(1)中的问题?(能用含有x的不等式采描述(1)中的问题,即x2-x-<0的解集是什么?x2-x->0的解集是什么?)想一想:二次函数与一元二次不等式有什么关系?让学生类比二次函数与一元二次不等式方程的关系,讨论、交流,达成共识:(1)从“形”的方面看,二次函数y=ax2+bJ+c在x轴上方的图象上的点的横坐标,即为一元二次不等式ax2+bx+c>0的解;在x轴下方的图象上的点的横坐标.即为一元二次不等式ax2+bx+c<0的解。\n(2)从“数”的方面看,当二次函数y=ax2+bx+c的函数值大于0时,相应的自变量的值即为一元二次不等式ax2+bx+c>0的解;当二次函数y=ax2+bx+c的函数值小于0时,相应的自变量的值即为一元二次不等式ax2+bc+c<0的解。这一结论反映了二次函数与一元二次不等式的关系。四、课堂练习:P23练习1、2。五、小结:1.通过本节课的学习,你有什么收获?有什么困惑?2.若二次函数y=ax2+bx+c的图象与x轴无交点,试说明,元二次方程ax2+bx+c=0和一元二次不等式ax2+bx+c>0、ax2+bx+c<0的解的情况。六、作业:1.二次函数y=x2-3x-18的图象与x轴有两交点,求两交点间的距离。2.已知函数y=x2-x-2。(1)先确定其图象的开口方向、对称轴和顶点坐标,再画出图象(2)观察图象确定:x取什么值时,①y=0,②y>0;③y<0。3.学校建造一个圆形喷水池,在水池中央垂直于水面安装一个花形柱子OA。O恰好在水面中心,布置在柱子顶端A处的喷头向外喷水,水流在各个方向上沿形状相同的抛物线路径落下,且在过OA任意平面上的抛物线如图(5)所示,建立直角坐标系(如图(6)),水流喷出的高度y(m)与水面距离x(m)之间的函数关系式是y=-x2+x+,请回答下列问题:(1)花形柱子OA的高度;(2)若不计其他因素,水池的半径至少要多少米,才能使喷出的水不至于落在池外?4.如图(7),一位篮球运动员跳起投篮,球沿抛物线y=-x2+3.5运行,然后准确落人篮框内。已知篮框的中心离地面的距离为3.05米。(1)球在空中运行的最大高度为多少米?(2)如果该运动员跳投时,球出手离地面的高度为2.25米,请问他距离篮框中心的水平距离是多少?26.2 用函数的观点看一元二次方程(2)教学目标:\n1.复习巩固用函数y=ax2+bx+c的图象求方程ax2+bx+c=0的解。2.让学生体验函数y=x2和y=bx+c的交点的横坐标是方程x2=bx+c的解的探索过程,掌握用函数y=x2和y=bx+c图象交点的方法求方程ax2=bx+c的解。3.提高学生综合解题能力,渗透数形结合思想。重点难点:重点;用函数图象法求方程的解以及提高学生综合解题能力是教学的重点。难点:提高学生综合解题能力,渗透数形结合的思想是教学的难点。教学过程:一、复习巩固1.如何运用函数y=ax2+bx+c的图象求方程ax2+bx+c的解?2.完成以下两道题:(1)画出函数y=x2+x-1的图象,求方程x2+x-1=0的解。(精确到0.1)(2)画出函数y=2x2-3x-2的图象,求方程2x2-3x-2=0的解。教学要点1.学生练习的同时,教师巡视指导,2.教师根据学生情况进行讲评。解:略函数y=2x2-3x-2的图象与x轴交点的横坐标分别是x1=-和x2=2,所以一元二次方程的解是x1=-和x2=2。二、探索问题问题1:(P23问题4)育才中学初三(3)班学生在上节课的作业中出现了争论:求方程x2=x十3的解时,几乎所有学生都是将方程化为x2-x-3=0,画出函数y=x2-x-3的图象,观察它与x轴的交点,得出方程的解。唯独小刘没有将方程移项,而是分别画出了函数y=x2和y=x+2的图象,如图(3)所示,认为它们的交点A、B的横坐标-和2就是原方程的解.提问:1.这两种解法的结果一样吗?2.小刘解法的理由是什么?让学生讨论,交流,发表不同意见,并进行归纳。3.函数y=x2和y=bx+c的图象一定相交于两点吗?你能否举出例子加以说明?4,函数y=x2和y=bx+c的图象的交点横坐标一定是一元二次方程x2=bx+c的解吗?5.如果函数y=x2和y=bx+c图象没有交点,一元二次方程x2=bx+c的解怎样?三、做一做利用图26.3.4(见P24页),运用小刘方法求下列方程的解,并检验小刘的方法是否合理。(1)x2+x-1=0(精确到0.1);(2)2x2-3x-2=0。教学要点:①要把(1)的方程转化为x2=-x+1,画函数y=x2和y=-x+1的图象;②要把(2)的方程转化为x2=x+1,画函数y=x2和y=x+1的图象;③在学生练习的同时,教师巡视指导;④解的情况分别与复习两道题的结果进行比较。四、综合运用\n已知抛物线y1=2x2-8x+k+8和直线y2=mx+1相交于点P(3,4m)。(1)求这两个函数的关系式;(2)当x取何值时,抛物线与直线相交,并求交点坐标。解:(1)因为点P(3,4m)在直线y2=mx+1上,所以有4m=3m+1,解得m=1所以y1=x+1,P(3,4)。因为点P(3,4)在抛物线y1=2x2-8x+k+8上,所以有4=18-24+k+8解得k=2所以y1=2x2-8x+10(2)依题意,得解这个方程组,得,所以抛物线与直线的两个交点坐标分别是(3,4),(1.5,2.5)。五、小结:1.如何用画函数图象的方法求方程韵解?2.你能根据方程组:的解的情况,来判定函数y=x2与y=bx+c图象交点个数吗?请说说你的看法。六、作业:1.利用函数的图象求下列方程的解:(1)x2+x-6=0;(2)2x2-3x-5=02.利用函数的图象求下列方程的解。(1)、,(2)、3.填空。(1)抛物线y=x2-x-2与x轴的交点坐标是______,与y轴的交点坐标是______。(2)抛物线y=2x2-5x+3与y轴的交点坐标是______,与x轴的交点坐标是______。4.已知抛物线y1=x2+x-k与直线y=-2x+1的交点的纵坐标为3。(1)求抛物线的关系式;(2)求抛物线y=x2+x-k与直线y=-2x+1的另一个交点坐标.5.已知抛物线y=ax2+bx+c与直线y=x-2相交于(m,-2),(n,3)两点,且抛物线的对称轴为直线x=3,求函数的关系式。26.3 实际问题与二次函数(1)教学目标:1.使学生掌握用待定系数法由已知图象上一个点的坐标求二次函数y=ax2的关系式。2.使学生掌握用待定系数法由已知图象上三个点的坐标求二次函数的关系式。3.让学生体验二次函数的函数关系式的应用,提高学生用数学意识。重点难点:重点:已知二次函数图象上一个点的坐标或三个点的坐标,分别求二次函数y=ax2、y=ax2+bx+c的关系式是教学的重点。难点:已知图象上三个点坐标求二次函数的关系式是教学的难点。教学过程:一、创设问题情境如图,某建筑的屋顶设计成横截面为抛物线型(曲线AOB)的薄壳屋顶。它的拱高AB为4m,拱高CO为0.8m。施工前要先制造建筑模板,怎样画出模板的轮廓线呢?分析:为了画出符合要求的模板,通常要先建立适当的直角坐标系,再写出函数关系式,然后根据这个关系式进行计算,放样画图。\n如图所示,以AB的垂直平分线为y轴,以过点O的y轴的垂线为x轴,建立直角坐标系。这时,屋顶的横截面所成抛物线的顶点在原点,对称轴是y轴,开口向下,所以可设它的函数关系式为:y=ax2(a<0)(1)因为y轴垂直平分AB,并交AB于点C,所以CB==2(cm),又CO=0.8m,所以点B的坐标为(2,-0.8)。因为点B在抛物线上,将它的坐标代人(1),得-0.8=a×22所以a=-0.2因此,所求函数关系式是y=-0.2x2。请同学们根据这个函数关系式,画出模板的轮廓线。二、引申拓展问题1:能不能以A点为原点,AB所在直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系?让学生了解建立直角坐标系的方法不是唯一的,以A点为原点,AB所在的直线为x轴,过点A的x轴的垂线为y轴,建立直角坐标系也是可行的。问题2,若以A点为原点,AB所在直线为x轴,过点A的x轴的垂直为y轴,建立直角坐标系,你能求出其函数关系式吗?分析:按此方法建立直角坐标系,则A点坐标为(0,0),B点坐标为(4,0),OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,O点坐标为(2;0.8)。即把问题转化为:已知抛物线过(0,0)、(4,0);(2,0.8)三点,求这个二次函数的关系式。二次函数的一般形式是y=ax2+bx+c,求这个二次函数的关系式,跟以前学过求一次函数的关系式一样,关键是确定o、6、c,已知三点在抛物线上,所以它的坐标必须适合所求的函数关系式;可列出三个方程,解此方程组,求出三个待定系数。解:设所求的二次函数关系式为y=ax2+bx+c。因为OC所在直线为抛物线的对称轴,所以有AC=CB,AC=2m,拱高OC=0.8m,所以O点坐标为(2,0.8),A点坐标为(0,0),B点坐标为(4,0)。由已知,函数的图象过(0,0),可得c=0,又由于其图象过(2,0.8)、(4,0),可得到解这个方程组,得所以,所求的二次函数的关系式为y=-x2+x。问题3:根据这个函数关系式,画出模板的轮廓线,其图象是否与前面所画图象相同?问题4:比较两种建立直角坐标系的方式,你认为哪种建立直角坐标系方式能使解决问题来得更简便?为什么?(第一种建立直角坐标系能使解决问题来得更简便,这是因为所设函数关系式待定系数少,所求出的函数关系式简单,相应地作图象也容易)请同学们阅渎P18例7。三、课堂练习:P18练习1.(1)、(3)2。四、综合运用例1.如图所示,求二次函数的关系式。分析:观察图象可知,A点坐标是(8,0),C点坐标为(0,4)。从图中可知对称轴是直线x=3,由于抛物线是关于对称轴的轴对称图形,所以此抛物线在x轴上的另一交点B的坐标是(-2,0),问题转化为已知三点求函数关系式。\n解:观察图象可知,A、C两点的坐标分别是(8,0)、(0,4),对称轴是直线x=3。因为对称轴是直线x=3,所以B点坐标为(-2,0)。设所求二次函数为y=ax2+bx+c,由已知,这个图象经过点(0,4),可以得到c=4,又由于其图象过(8,0)、(-2,0)两点,可以得到解这个方程组,得所以,所求二次函数的关系式是y=-x2+x+4练习:一条抛物线y=ax2+bx+c经过点(0,0)与(12,0),最高点的纵坐标是3,求这条抛物线的解析式。五、小结:二次函数的关系式有几种形式,函数的关系式y=ax2+bx+c就是其中一种常见的形式。二次函数关系式的确定,关键在于求出三个待定系数a、b、c,由于已知三点坐标必须适合所求的函数关系式,故可列出三个方程,求出三个待定系数。六、作业1.P19习题26.24.(1)、(3)、5。2.选用课时作业优化设计,每一课时作业优化设计1.二次函数的图象的顶点在原点,且过点(2,4),求这个二次函数的关系式。2.若二次函数的图象经过A(0,0),B(-1,-11),C(1,9)三点,求这个二次函数的解析式。3.如果抛物线y=ax2+Bx+c经过点(-1,12),(0,5)和(2,-3),;求a+b+c的值。4.已知二次函数y=ax2+bx+c的图象如图所示,求这个二次函数的关系式;5.二次函数y=ax2+bx+c与x轴的两交点的横坐标是-,,与x轴交点的纵坐标是-5,求这个二次函数的关系式。26.3 实际问题与二次函数(2)教学目标:1.复习巩固用待定系数法由已知图象上三个点的坐标求二次函数的关系式。2.使学生掌握已知抛物线的顶点坐标或对称轴等条件求出函数的关系式。重点难点:根据不同条件选择不同的方法求二次函数的关系式是教学的重点,也是难点。教学过程:一、复习巩固1.如何用待定系数法求已知三点坐标的二次函数关系式?\n2.已知二次函数的图象经过A(0,1),B(1,3),C(-1,1)。(1)求二次函数的关系式,(2)画出二次函数的图象;(3)说出它的顶点坐标和对称轴。答案:(1)y=x2+x+1,(2)图略,(3)对称轴x=-,顶点坐标为(-,)。3.二次函数y=ax2+bx+c的对称轴,顶点坐标各是什么?[对称轴是直线x=-,顶点坐标是(-,)]二、范例例1.已知一个二次函数的图象过点(0,1),它的顶点坐标是(8,9),求这个二次函数的关系式。分析:二次函数y=ax2+bx+c通过配方可得y=a(x+h)2+k的形式称为顶点式,(-h,k)为抛物线的顶点坐标,因为这个二次函数的图象顶点坐标是(8,9),因此,可以设函数关系式为:y=a(x-8)2+9由于二次函数的图象过点(0,1),将(0,1)代入所设函数关系式,即可求出a的值。请同学们完成本例的解答。练习:P18练习1.(2)。例2.已知抛物线对称轴是直线x=2,且经过(3,1)和(0,-5)两点,求二次函数的关系式。解法1:设所求二次函数的解析式是y=ax2+bx+c,因为二次函数的图象过点(0,-5),可求得c=-5,又由于二次函数的图象过点(3,1),且对称轴是直线x=2,可以得解这个方程组,得:所以所求的二次函数的关系式为y=-2x2+8x-5。解法二;设所求二次函数的关系式为y=a(x-2)2+k,由于二次函数的图象经过(3,1)和(0,-5)两点,可以得到解这个方程组,得:所以,所求二次函数的关系式为y=-2(x-2)2+3,即y=-2x2+8x-5。例3。已知抛物线的顶点是(2,-4),它与y轴的一个交点的纵坐标为4,求函数的关系式。解法1:设所求的函数关系式为y=a(x+h)2+k,依题意,得y=a(x-2)2-4因为抛物线与y轴的一个交点的纵坐标为4,所以抛物线过点(0,4),于是a(0-2)2-4=4,解得a=2。所以,所求二次函数的关系式为y=2(x-2)2-4,即y=2x2-8x+4。解法2:设所求二次函数的关系式为y=ax2+bx+c?依题意,得解这个方程组,得:所以,所求二次函数关系式为y=2x2-8x+4。三、课堂练习1.已知二次函数当x=-3时,有最大值-1,且当x=0时,y=-3,求二次函数的关系式。解法1:设所求二次函数关系式为y=ax2+bx+c,因为图象过点(0,3),所以c=3,又由于二次函数当x=-3时,有最大值-1,可以得到:解这个方程组,得:\n所以,所求二次函数的关系式为y=x2+x+3。解法2:所求二次函数关系式为y=a(x+h)2+k,依题意,得y=a(x+3)2-1因为二次函数图象过点(0,3),所以有3=a(0+3)2-1解得a=所以,所求二次函数的关系为y=44/9(x+3)2-1,即y=x2+x+3.小结:让学生讨论、交流、归纳得到:已知二次函数的最大值或最小值,就是已知该函数顶点坐标,应用顶点式求解方便,用一般式求解计算量较大。2.已知二次函数y=x2+px+q的图象的顶点坐标是(5,-2),求二次函数关系式。简解:依题意,得解得:p=-10,q=23所以,所求二次函数的关系式是y=x2-10x+23。四、小结1,求二次函数的关系式,常见的有几种类型?[两种类型:(1)一般式:y=ax2+bx+c(2)顶点式:y=a(x+h)2+k,其顶点是(-h,k)]2.如何确定二次函数的关系式?让学生回顾、思考、交流,得出:关键是确定上述两个式子中的待定系数,通常需要三个已知条件。在具体解题时,应根据具体的已知条件,灵活选用合适的形式,运用待定系数法求解。五、作业:1.已知抛物线的顶点坐标为(-1,-3),与y轴交点为(0,-5),求二次函数的关系式。2.函数y=x2+px+q的最小值是4,且当x=2时,y=5,求p和q。3.若抛物线y=-x2+bx+c的最高点为(-1,-3),求b和c。4.已知二次函数y=ax2+bx+c的图象经过A(0,1),B(-1,0),C(1,0),那么此函数的关系式是______。如果y随x的增大而减少,那么自变量x的变化范围是______。5.已知二次函数y=ax2+bx+c的图象过A(0,-5),B(5,0)两点,它的对称轴为直线x=2,求这个二次函数的关系式。6.如图是抛物线拱桥,已知水位在AB位置时,水面宽4米,水位上升3米就达到警戒线CD,这时水面宽4米,若洪水到来时,水位以每小时0.25米速度上升,求水过警戒线后几小时淹到拱桥顶?第26章 《二次函数》小结与复习(1)\n教学目标:理解二次函数的概念,掌握二次函数y=ax2的图象与性质;会用描点法画抛物线,能确定抛物线的顶点、对称轴、开口方向,能较熟练地由抛物线y=ax2经过适当平移得到y=a(x-h)2+k的图象。重点难点:1.重点:用配方法求二次函数的顶点、对称轴,根据图象概括二次函数y=ax2图象的性质。2.难点:二次函数图象的平移。教学过程:一、结合例题精析,强化练习,剖析知识点1.二次函数的概念,二次函数y=ax2(a≠0)的图象性质。例:已知函数是关于x的二次函数,求:(1)满足条件的m值;(2)m为何值时,抛物线有最低点?求出这个最低点.这时当x为何值时,y随x的增大而增大?(3)m为何值时,函数有最大值?最大值是什么?这时当x为何值时,y随x的增大而减小?学生活动:学生四人一组进行讨论,并回顾例题所涉及的知识点,让学生代表发言分析解题方法,以及涉及的知识点。教师精析点评,二次函数的一般式为y=ax2+bx+c(a≠0)。强调a≠0.而常数b、c可以为0,当b,c同时为0时,抛物线为y=ax2(a≠0)。此时,抛物线顶点为(0,0),对称轴是y轴,即直线x=0。(1)使是关于x的二次函数,则m2+m-4=2,且m+2≠0,即:m2+m-4=2,m+2≠0,解得;m=2或m=-3,m≠-2(2)抛物线有最低点的条件是它开口向上,即m+2>0,(3)函数有最大值的条件是抛物线开口向下,即m+2<0。抛物线的增减性要结合图象进行分析,要求学生画出草图,渗透数形结合思想,进行观察分析。强化练习;已知函数是二次函数,其图象开口方向向下,则m=_____,顶点为_____,当x_____0时,y随x的增大而增大,当x_____0时,y随x的增大而减小。2。用配方法求抛物线的顶点,对称轴;抛物线的画法,平移规律,例:用配方法求出抛物线y=-3x2-6x+8的顶点坐标、对称轴,并画出函数图象,说明通过怎样的平移,可得到抛物线y=-3x2。学生活动:小组讨论配方方法,确定抛物线画法的步骤,探索平移的规律。充分讨论后让学生代表归纳解题方法与思路。教师归纳点评:(1)教师在学生合作讨论基础上强调配方的方法及配方的意义,指出抛物线的一般式与顶点式的互化关系:y=ax2+bx+c————→y=a(x+)2+(2)强调利用抛物线的对称性进行画图,先确定抛物线的顶点、对称轴,利用对称性列表、描点、连线。(3)抛物线的平移抓住关键点顶点的移动,分析完例题后归纳;投影展示:\n强化练习:(1)抛物线y=x2+bx+c的图象向左平移2个单位。再向上平移3个单位,得抛物线y=x2-2x+1,求:b与c的值。(2)通过配方,求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标,再画出图象。3.知识点串联,综合应用。例:如图,已知直线AB经过x轴上的点A(2,0),且与抛物线y=ax2相交于B、C两点,已知B点坐标为(1,1)。(1)求直线和抛物线的解析式;(2)如果D为抛物线上一点,使得△AOD与△OBC的面积相等,求D点坐标。学生活动:开展小组讨论,体验用待定系数法求函数的解析式。教师点评:(1)直线AB过点A(2,0),B(1,1),代入解析式y=kx+b,可确定k、b,抛物线y=ax2过点B(1,1),代人可确定a。求得:直线解析式为y=-x+2,抛物线解析式为y=x2。(2)由y=-x+2与y=x2,先求抛物线与直线的另一个交点C的坐标为(-2,4),S△OBC=S△ABC-S△OAB=3。∵S△AOD=S△OBC,且OA=2∴D的纵坐标为3又∵D在抛物线y=x2上,∴x2=3,即x=±∴D(-,3)或(,3)强化练习:函数y=ax2(a≠0)与直线y=2x-3交于点A(1,b),求:(1)a和b的值;(2)求抛物线y=ax2的顶点和对称轴;(3)x取何值时,二次函数y=ax2中的y随x的增大而增大,(4)求抛物线与直线y=-2两交点及抛物线的顶点所构成的三角形面积。二、课堂小结1.让学生反思本节教学过程,归纳本节课复习过的知识点及应用。2。投影:完成下表:\n三、作业:作业优化设计一、填空。1.若二次函数y=(m+1)x2+m2-2m-3的图象经过原点,则m=______。2.函数y=3x2与直线y=kx+3的交点为(2,b),则k=______,b=______。3.抛物线y=-(x-1)2+2可以由抛物线y=-x2向______方向平移______个单位,再向______方向平移______个单位得到。4.用配方法把y=-x2+x-化为y=a(x-h)2+k的形式为y=__________________,其开口方向______,对称轴为______,顶点坐标为______。二、选择。1.函数y=(m-n)x2+mx+n是二次函数的条件是()A.m、n是常数,且m≠0B.m、n是常数,且m≠nC.m、n是常数,且n≠0D.m、n可以为任意实数2.直线y=mx+1与抛物线y=2x2-8x+k+8相交于点(3,4),则m、k值为()A.B.C.D.3.下列图象中,当ab>0时,函数y=ax2与y=ax+b的图象是()三、解答题1.函数(1)当a取什么值时,它为二次函数。(2)当a取什么值时,它为一次函数。2.已知抛物线y=x2和直线y=ax+1(1)求证:不论a取何值,抛物线与直线必有两个不同舶交点。(2)设A(x1,y1),B(x2,y2)是抛物线与直线的两个交点,P为线段AB的中点,且点P的横坐标为,试用a表示点P的纵坐标。(3)函数A、B两点的距离d=|x1-x2|,试用a表示d。\n(4)过点C(0,-1)作直线l平行于x轴,试判断直线l与以AB为直径的圆的位置关系,并说明理由。第26章 《二次函数》小结与复习(2)教学目标:会用待定系数法求二次函数的解析式,能结合二次函数的图象掌握二次函数的性质,能较熟练地利用函数的性质解决函数与圆、三角形、四边形以及方程等知识相结合的综合题。重点难点:重点;用待定系数法求函数的解析式、运用配方法确定二次函数的特征。难点:会运用二次函数知识解决有关综合问题。教学过程:一、例题精析,强化练习,剖析知识点用待定系数法确定二次函数解析式.例:根据下列条件,求出二次函数的解析式。(1)抛物线y=ax2+bx+c经过点(0,1),(1,3),(-1,1)三点。(2)抛物线顶点P(-1,-8),且过点A(0,-6)。(3)已知二次函数y=ax2+bx+c的图象过(3,0),(2,-3)两点,并且以x=1为对称轴。(4)已知二次函数y=ax2+bx+c的图象经过一次函数y=-3/2x+3的图象与x轴、y轴的交点;且过(1,1),求这个二次函数解析式,并把它化为y=a(x-h)2+k的形式。学生活动:学生小组讨论,题目中的四个小题应选择什么样的函数解析式?并让学生阐述解题方法。教师归纳:二次函数解析式常用的有三种形式:(1)一般式:y=ax2+bx+c(a≠0)(2)顶点式:y=a(x-h)2+k(a≠0)(3)两根式:y=a(x-x1)(x-x2)(a≠0)当已知抛物线上任意三点时,通常设为一般式y=ax2+bx+c形式。当已知抛物线的顶点与抛物线上另一点时,通常设为顶点式y=a(x-h)2+k形式。当已知抛物线与x轴的交点或交点横坐标时,通常设为两根式y=a(x-x1)(x-x2)强化练习:已知二次函数的图象过点A(1,0)和B(2,1),且与y轴交点纵坐标为m。(1)若m为定值,求此二次函数的解析式;(2)若二次函数的图象与x轴还有异于点A的另一个交点,求m的取值范围。二、知识点串联,综合应用例:如图,抛物线y=ax2+bx+c过点A(-1,0),且经过直线y=x-3与坐标轴的两个交点B、C。(1)求抛物线的解析式;(2)求抛物线的顶点坐标,(3)若点M在第四象限内的抛物线上,且OM⊥BC,垂足为D,求点M的坐标。学生活动:学生先自主分析,然后小组讨论交流。教师归纳:(1)求抛物线解析式,只要求出A、B,C三点坐标即可,设y=x2-2x-3。(2)抛物线的顶点可用配方法求出,顶点为(1,-4)。(3)由|0B|=|OC|=3又OM⊥BC。所以,OM平分∠BOC\n设M(x,-x)代入y=x2-2x-3解得x=因为M在第四象限:∴M(,)题后反思:此题为二次函数与一次函数的交叉问题,涉及到了用待定系数法求函数解析式,用配方法求抛物线的顶点坐标;等腰三角形三线合一等性质应用,求M点坐标时应考虑M点所在象限的符号特征,抓住点M在抛物线上,从而可求M的求标。强化练习;已知二次函数y=2x2-(m+1)x+m-1。(1)求证不论m为何值,函数图象与x轴总有交点,并指出m为何值时,只有一个交点。(2)当m为何值时,函数图象过原点,并指出此时函数图象与x轴的另一个交点。(3)若函数图象的顶点在第四象限,求m的取值范围。三、课堂小结1.投影:让学生完成下表:2.归纳二次函数三种解析式的实际应用。3.强调二次函数与方程、圆、三角形,三角函数等知识综合的综合题解题思路。四、作业:课后反思:本节课重点是用待定系数法求函数解析式,应注意根据不同的条件选择合适的解析式形式;要让学生熟练掌握配方法,并由此确定二次函数的顶点、对称轴,并能结合图象分析二次函数的有关性质。对于二次函数与其他知识的综合应用,关键要让学生掌握解题思路,把握题型,能利用数形结合思想进行分析,从而把握解题的突破口。课时作业优化设计一、填空。\n1.如果一条抛物线的形状与y=-x2+2的形状相同,且顶点坐标是(4,-2),则它的解析式是_____。2.开口向上的抛物线y=a(x+2)(x-8)与x轴交于A、B两点,与y轴交于C点,若∠ACB=90°,则a=_____。3.已知抛物线y=ax2+bx+c的对称轴为x=2,且过(3,0),则a+b+c=______。二、选择。1.如图(1),二次函数y=ax2+bx+c图象如图所示,则下列结论成立的是()A.a>0,bc>0B.a<0,bc<0C.a>O,bc<OD.a<0,bc>02.已知二次函数y=ax2+bx+c图象如图(2)所示,那么函数解析式为()A.y=-x2+2x+3B.y=x2-2x-3C.y=-x2-2x+3D.y=-x2-2x-33.若二次函数y=ax2+c,当x取x1、x2(x1≠x2)时,函数值相等,则当x取x1+x2时,函数值为()A.a+cB.a-cC.-cD.c4.已知二次函数y=ax2+bx+c图象如图(3)所示,下列结论中:①abc>0,②b=2a;③a+b+c<0,④a-b+c>0,正确的个数是()A.4个B.3个C.2个D.1个三、解答题。已知抛物线y=x2-(2m-1)x+m2-m-2。(1)证明抛物线与x轴有两个不相同的交点,(2)分别求出抛物线与x轴交点A、B的横坐标xA、xB,以及与y轴的交点的纵坐标yc(用含m的代数式表示)(3)设△ABC的面积为6,且A、B两点在y轴的同侧,求抛物线的解析式。第26章 《二次函数》小结与复习(3)教学目标:1.使学生掌握二次函数模型的建立,并能运用二次函数的知识解决实际问题。2.能够分析和表示不同背景下实际问题中变量之间的二次函数关系,获得用数学方法解决实际问题的经验,感受数学模型、思想在实际问题中的应用价值。重点难点:重点:利用二次函数的知识解决实际问题,并对解决问题的策略进行反思。难点:将实际问题转化为函数问题,并利用函数的性质进行决策。教学过程:一、例题精析,引导学法,指导建模1.何时获得最大利润问题。\n例:重庆市某区地理环境偏僻,严重制约经济发展,丰富的花木产品只能在本地销售,区政府对该花木产品每投资x万元,所获利润为P=-(x-30)2+10万元,为了响应我国西部大开发的宏伟决策,区政府在制定经济发展的10年规划时,拟开发此花木产品,而开发前后可用于该项目投资的专项资金每年最多50万元,若开发该产品,在前5年中,必须每年从专项资金中拿出25万元投资修通一条公路,且5年修通,公路修通后,花木产品除在本地销售外,还可运往外地销售,运往外地销售的花木产品,每投资x万元可获利润Q=-(50-x)2+(50-x)+308万元。(1)若不进行开发,求10年所获利润最大值是多少?(2)若按此规划开发,求10年所获利润的最大值是多少?(3)根据(1)、(2)计算的结果,请你用一句话谈谈你的想法。学生活动:投影给出题目后,让学生先自主分析,小组进行讨论。教师活动:在学生分析、讨论过程中,对学生进行学法引导,引导学生先了解二次函数的基本性质,并学会从实际问题中抽象出二次函数的模型,借助二次函数的性质来解决这类实际应用题。教师精析:(1)若不开发此产品,按原来的投资方式,由P=-(x-30)2+10知道,只需从50万元专款中拿出30万元投资,每年即可获最大利润10万元,则10年的最大利润为M1=10×10=100万元。(2)若对该产品开发,在前5年中,当x=25时,每年最大利润是:P=-(25-30)2+10=9.5(万元)则前5年的最大利润为M2=9.5×5=47.5万元设后5年中x万元就是用于本地销售的投资。则由Q=-(50-x)+(50-x)+308知,将余下的(50-x万元全部用于外地销售的投资.才有可能获得最大利润;则后5年的利润是:M3=[-(x-30)2+10]×5+(-x2+x+308)×5=-5(x-20)2+3500故当x=20时,M3取得最大值为3500万元。∴10年的最大利润为M=M2+M3=3547.5万元(3)因为3547.5>100,所以该项目有极大的开发价值。强化练习:某公司试销一种成本单价为500元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于800元/件,经试销调查,发现销售量y(件)与销售单价x(元/件)可近似看做—次函数y=kx+b的关系,如图所示。(1)根据图象,求一次函数y=kx+b的表达式,(2)设公司获得的毛利润(毛利润=销售总价-成本总价)为S元,①试用销售单价x表示毛利润S;②试问销售单价定为多少时,该公司可获得最大利润?最大利润是多少?此时的销售量是多少?分析:(1)由图象知直线y=kx+b过(600,400)、(700,300)两点,代入可求解析式\n为y=-x+1000(2)由毛利润S=销售总价-成本总价,可得S与x的关系式。S=xy-500y=x·(-x+1000)-500(-x+100)=-x2+1500x-500000=-(x-750)2+62500(500<x<800)所以,当销售定价定为750元时,获最大利润为62500元。此时,y=-x+1000=-750+1000=250,即此时销售量为250件。2.最大面积是多少问题。例:某广告公司设计一幅周长为12米的矩形广告牌,广告设计费为每平方米1000元,设矩形的边长为x,面积为S平方米。(1)求出S与x之间的函数关系式;(2)请你设计一个方案,使获得的设计费最多,并求出这个设计费用;(3)为了使广告牌美观、大方,要求做成黄金矩形,请你按要求设计,并计算出可获得的设计费是多少?(精确到元)(参与资料:①当矩形的长是宽与(长+宽)的比例中项时,这样的矩形叫做黄金矩形,②≈2.236)学生活动:让学生根据已有的经验,根据实际几何问题中的数量关系,建立恰当的二次函数模型,并借助二次函数的相关知识来解决这类问题。教师精析:(1)由矩形面积公式易得出S=x·(6-x)=-x2+6x(2)确定所建立的二次函数的最大值,从而可得相应广告费的最大值。由S=-x2+6x=-(x-3)2+9,知当x=3时,即此矩形为边长为3的正方形时,矩形面积最大,为9m2,因而相应的广告费也最多:为9×1000=9000元。(3)构建相应的方程(或方程组)来求出矩形面积,从而得到广告费用的大小。设设计的黄金矩形的长为x米,则宽为(6-x)米。则有x2=6·(6-x)解得x1=-3-3(不合题意,舍去),x2=-3+3。即设计的矩形的长为(3,3)米,宽为(9-3)米时,矩形为黄金矩形。此时广告费用约为:1000(3-3)(9-3)≈8498(元)二、课堂小结:让学生谈谈.通过本节课的学习,有哪些体验,如何将实际问题转化为二次函数问题,从而利用二次函数的性质解决最大利润问题,最大面积问题。三、作业:P28,复习题C组13~15题。课后反思:二次函数的应用综合体现了二次函数性质的应用,同时,这类综合题与其他学过的知识有着密切的联系,最大利润问题,最大面积问题是实际生活中常见的问题,综合性强,解题的关键在于如何建立恰当的二次函数模型,建立正确的函数关系式,这一点应让学生有深刻的体会。第三课时作业优化设计1.某公司生产的A种产品,它的成本是2元,售价为3元,年销售量为100万件,为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x(十万元)时,产品的年销售量将是原销售量的y倍,且y=-x2+x+1,如果把利润看成是销售总额减去成本费和广告费。(1)试写出年利润S(十万元)与广告费x(十万元)的函数关系式.(2)如果投入广告费为10~30万元,问广告费在什么范围内,公司获得的年利润随广告费的增大而增次?(3)在(2)中,投入的广告费为多少万元时,公司获得的年利润最大?是多少?\n2.如图,有长为24米的篱笆,围成中间隔有一道篱笆的长方形的花圃,且花圃的长可借用一段墙体(墙体的最大可使用长度a=10米)。(1)如果所围成的花圃的面积为45平方米,试求宽AB的长;(2)按题目的设计要求,能围成面积比45平方米更大的花圃吗?如果能,请求出最大面积,并说明围法,如果不能请说明理由.相似三角形的性质(二)教学目标:知识与技能1、理解掌握相似三角形周长比、面积比与相似比之间的关系;掌握定理的证明方法。2、灵活运用相似三角形的判定和性质,提高分析,推理能力。过程与方法:1、对性质定理的探究经历观察——猜想——论证——归纳的过程,培养学生主动探究、合作交流的习惯和严谨治学的态度。2、通过实际情境的创设和解决,使学生逐步掌握把实际问题转化为数学问题,复杂问题转化为简单问题的思想方法。3、通过例题的拓展延伸,体会类比的数学思想,培养学生大胆猜想、勇于探索、勤于思考的数学品质,提高分析问题和解决问题的能力。情感与态度:在学习和探讨的过程中,体验特殊到一般的认知规律;通过学生之间的交流合作,在合作中体验成功的喜悦,树立学习的自信心;通过对生活问题的解决,体会数学知识在实际中的广泛应用。教学重点:相似三角形性质定理的探索及应用教学难点:综合应用相似三角形的性质与判定探索三角形中面积之间的关系教学方法与手段:探究式教学、小组合作学习、多媒体教学教学过程:一、创设情境,引入新课1、我们已经学了相似三角形的哪些性质?\n2、问题情境:某施工队在道路拓宽施工时遇到这样一个问题,马路旁原有一个面积为100平方米、周长为80米的三角形绿化地,由于马路拓宽绿地被削去了一个角,变成了一个梯形,原绿化地一边AB的长由原来的30米缩短成18米。现在的问题是:被削去的部分面积有多少?周长是多少?你能解决这个问题吗?二、实践交流,探索新知1、看一看:△ABC与△A′B′C′有什么关系?为什么?2、算一算:△ABC与△A′B′C′的相似比是多少?△ABC与△A′B′C′的周长比是多少?面积比是多少?3、想一想:你发现上面两个相似三角形的周长比和相似比有什么关系?面积比与相似比又有什么关系?4、验一验:是不是任何两个相似三角形都有此关系呢?你能加以验证吗?5、在学生思考、讨论的基础上给出证题过程(多媒体)6、归纳小结;相似三角形性质定理2相似三角形的周长比等于相似比,面积比等于相似比的平方。三、基础训练,加深理解练一练:已知两个三角形相似,请完成下列表格:相似比2……周长比……面积比10000……归纳:周长比等于相似比;已知相似比、周长比,求面积比要平方,已知面积比求相似比或周长比则要平方。四、综合应用,解决问题已知:如图,DE∥BC,AB=30m,BD=18m,△ABC的周长为80m,面积为100m2,求△ADE的周长和面积?五、拓展延伸,共同提高\n1、过E作EF∥AB交BC于F,其他条件不变,则△EFC的面积等于多少?平行四边形BDEF的面积为多少?2、若设S△ABC=S,S△ADE=S1,S△EFC=S2,试猜想:S与S1、S2之间存在怎样的关系?六、类似猜想,深入探究探究:如图,DE∥BC,FG∥AB,MN∥AC,且DE、FG、MN交于点P,若设S△DMP=S1,S△PEF=S2,S△GNP=S3,S△ABC=S,S与S1、S2、S3之间是否也有类似结论?猜想并加以论证。七、回顾反思,畅谈心得本节课你有何收获?1、这节课我们学到了哪些知识?2、我们是用哪些方法获得这些知识的?3、通过本节课的学习,你有没有新的想法或发现?你觉得还有什么问题需要继续讨论吗?八、布置作业1、作业本2、3(2)(3)、4、52、探究推理过程课外整理完成,各组自行组织讨论交流。教学设计说明:1、本节课从一个较为实际的生活情境引入,设置问题悬念,激发学生的求知欲望,使学生掌握将实际问题转化为数学问题的思想方法,感受数学知识在生活中的广泛应用。\n2、性质定理2的学习和探索,注重于知识的形成过程,使学生体验特殊到一般的认知规律,以及由观察——猜想——论证——归纳的数学思维过程。3、由问题的解决变式到例题,再经例题加以拓展延伸,使本节内容衔接更趋自然,同时使学生充分体会类比的数学思想以及图形之间的互相联系。4、教学中注重小组之间的合作交流,在合作中加强学生的团体意识,体验成功的喜悦,树立学习的自信心。4.5相似三角形一.教学目标:1.知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的预备定理。2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3.情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二.教学重点、难点:重点:相似三角形的概念及判定的预备定理难点:当两个相似三角形部分重叠时,判别它们的对应角和对应边以及例1的证明三.教学过程:(一)类比联想,动手实验1.回顾全等三角形的含义(两个三角形形状、大小相同,能够完全重合),全等三角形所具有的性质(对应边、对应角相等)。2.让学生动手画一个三角形及三角形的一条中位线,教师提问:三角形的中位线所截的三角形与原三角形的形状有什么关系?大小呢?各角有什么关系?各边有什么关系?(二)直观演示,展示新知A/1.相似三角形的定义C’将上面所截得的三角形移出,记为B/AA’B’C’,原三角形记为ABC,因此有A=A’。,BBB=B’,C’,BC,,即两个三角形的对应角相等,对应边成比例。这样的两个三角形虽然大小不一定相等,但形状相同。定义:对应角相等,对应边成比例的两个三角形,叫做相似三角形。2.表示方法:\n教师介绍表示法,同时强调应把表示对应顶点的字母写在对应的位置上(可以以此与全等符号及表示作一比较,加强记忆)。1.相似三角形的性质:相似三角形的对应角相等,对应边成比例。2.相似比:相似三角形对应边的比,叫做两个相似三角形的相似比(或相似系数)。强调:A’B’C’与ABC的相似比是k,则ABC与A’B’C’的相似比是。练习:判断下列命题是否正确。错误的,举出反例;正确的,用定义加以说明:⑴所有的等腰三角形都相似。⑵所有的等边三角形都相似。⑶所有的直角三角形都相似。⑷所有的等腰直角三角形都相似。教师示范一个规范过程,让学生模仿,学会用定义来解决问题。A(三)范例研讨,迁移练习:1.例1。如图,在ABC中,DEDE//BC,D。E分别在AB,AC上。求证:△ADE∽△ABCBCF师生共同探讨:(1)目前要证明两个三角形相似只能根据什么?(定义)(2)根据定义证明两个三角形相似,要证明满足哪两个条件?(对应角相等,对应边成比例)(3)△ADE与△ABC满足“对应角相等”吗?为什么?(4)对应边成比例,由“DE//BC”的条件可得到怎样的比例式?(5)本题的关键归结为“只要证明什么”?(6)根据以前的推论,如何把DE移到BC上去,即应添怎样的辅助线?(EF//AB)教师板演证明过程。2.如图,DE//BC,D、E分别在BA、CA的延长线上,DE△ADE与△ABC相似吗?A——相似CB由此得到预备定理:3.定理平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似。4.例2,如图,D为△ABC的AB边上的一点,过点D作CDE//AC,交BC于E,已知BE:EC=2:1,AC=6CM,求DE的长。5、练习:P122页1、2、36、课后拓展(机动):(1)如图甲,已知ABD∽ACB,则AD:AB=:,AB:BD=:,如果AD=2,DC=1,那么AB=(2),如图乙,在ABC中,AD是角平分线,求证:\n。AADBCBDC图甲图乙五、归纳总结、布置作业:1.今天学习了相似三角形的定义,它既是三角形相似的判定,又是相似三角形的性质,同时可知全等三角形是相似三角形的特殊情况,其相似比是1;2.平行于三角形一边的直线和其它两边(或两边的延长线)相交,所构成的三角形与原三角形相似。3.作业4.5相似三角形一.教学目标:1.知识目标:(1)近一步理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)巩固判定三角形相似的预备定理及应用⑶掌握判定三角形相似的其他三个方法2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3.情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二.教学重点、难点:重点:判定三角形相似的其他三个方法难点;判定三角形相似的其他三个方法及应用三课堂探究:探究一在一张方格纸上画一个三角形,再画一个三角形,使它的各边长都是原来各边长的k倍,度量这两个三角形的对应角⑴它们有什么特点?⑵你认为这两个三角形之间是什么关系?BCA⑶你能把理由说来与大家分享吗\nED如图:△ABC和△中,,求证;△ABC∽△证明:截,过D作DE∥△∽△△ABC≌△△ABC∽△结论:如果两个三角形的三组对应边的比相等,那么这两个三角形相似备注探究二利用刻度尺和量角器画△ABC和△,使∠A=∠,,量BC、的长度,量∠B、∠C、∠、∠的度数①你发现BC、的长度有什么关系?②你发现∠B、∠C、∠、∠的度数有什么关系?③由①、②能得△ABC和△有什么关系?结论:如果两个三角形的两组对应边的比相等,且夹角相等,那么这两个三角形相似④改变∠A和K的大小,是否有同样的结论?⑤请同学们自己证明这个结论⑥△ABC和△,使∠B=∠,,这两个三角形相似吗?探究三作△ABC和△,使∠A=∠、∠B=∠,分别度量两个三角形的边长①你发现∠C与∠有什么关系?②你发现、、有什么关系?③由①、②能得△ABC和△有什么关系?结论:如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似④请同学们自己证明这个结论四例题欣赏例1:根据下列条件,判断△ABC和△是否相似,并说明理由?①∠A=、AB=7㎝、AC=14㎝∠=、=7㎝、=14㎝②AB=4㎝、BC=6㎝、AC=8㎝=12㎝、=18㎝、=21㎝五、课堂练习1、根据下列条件,判断△ABC和△是否相似,并说明理由?①∠A=、AB=8㎝、AC=15㎝\n∠=、=16㎝、=30㎝②AB=10㎝、BC=8㎝、AC=16㎝=20㎝、=16㎝、=32㎝2、图中的两个三角形是否相似/3、要做两个形状相同的三角形框架,其中一个的三边长为3、4、5,另一个三角形的一边长为2,它的另两条边长为多少?你有几个答案?4、底角相等的两个等腰三角形是否相似?顶角相等的两个等腰三角形呢?证明你的结论?5如图:Rt△ABC中,CD是斜边上的高,△ACD和△ACBD和△ABC相似吗?证明你的结论?六、归纳总结、布置作业:1.今天学习了相似三角形的三个判定,2.作业4.5相似三角形的应用一.教学目标:1.知识目标:(1)理解相似三角形的概念,了解相似三角形的对应元素及相似比;(2)掌握判定三角形相似的四个定理。2.能力目标:培养学生探究新知识,提高分析问题和解决问题的能力。增进发放思维能力和现有知识区向最近发展区迁延的能力。3.情感目标:加强学生对新知识探究的兴趣,渗透几何中理性思维的思想。二.教学重点、难点:重点:相似三角形的概念及判定定理难点:把实际问题转化成相似三角形的建模教学过程:一、温顾而知新⑴相似三角形有哪些性质?请画图并用几何语言描述;⑵相似三角形有哪些判定方法?请画图并用几何语言描述;二、例题欣赏例1、根据史料记载,古希腊数学家、天文家秦勒斯利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。如图,木杆EF长2m,它的影长FD为3m,测得OA为201m,求金字塔的高度。\n解;∵BA∥DE∴∠BAO=∠EDF又∵∠AOB=∠DFE=∴△ABC∽△DEF∴∴因此金字塔的高度134m.例2如图,为了估算河的宽度,我们可在河对岸选定一个目标点P,在近岸取点Q和S,使点P、Q、S共线且直线PS与岸垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b交于点R,测得QS=45m,ST=90m。QR=60m。求河的宽度PQ解;∵∠PQR=∠PST=,∠P=∠P ∴△PQR∽△PST∴ 即 解得PQ=90 因此河的宽度PQ为90m三 课堂练习 1、 在某一时刻,测得一根高为1.8m的竹杆的影长为3m,同一时刻测得一栋高楼的影长为90m,这栋楼的高度是多少? 2、 如图,测5得BD=120m,DC=60m,EC=50m,求河宽AB5㎝3.5㎝3.5㎝3如图,有一块呈三角形形状的草坪,其中一边的长是20m,在这个草坪的图纸上,这条边长5cm,其他两边的长度都是3.5cm。求该草坪其他两边的实际长度。四、小结\n ⑴灵活地应用相似三角形的性质、判定解决实际生活中的问题五、作业:1、如图,要测量A、B两点间距离,在O点打桩,取OA中点C,OB中点D,测得CD=31.4米,则AB=_______________米。2、一根竹竿的高为,影长为,同一时刻,某塔楼影长是,则塔楼的高度为 .3、已知:在△ABC中,P是AB上一点,连结CP,当满足条件∠ACP=或∠APC=或AC2=时,△ACP∽△ABC.4、如图,锐角三角形ABC的边AB,AC上的高线CE和BF相交于点D.请写出图中的两对相似三角形:________(用相似符号连接).5.△ABC的三边长分别为△的两边长分别为1和,如果△ABC~△,那么△的第三边长为_______.6.若△ABC~△.△~△,则△ABC和△的关系___________.7、如果△ABC∽△A′B′C′,相似比为k(k≠1),则k的值是()A.∠A:∠A′ B.A′B′:ABC.∠B:∠B′ D.BC:B′C′8、若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30° B.50°C.40° D.70°9、三角形三边之比3:5:7,与它相似的三角形最长边是21cm,另两边之和是()A.15cm B.18cmC.21cm D.24cm10、如图AB∥CD∥EF,则图中相似三角形的对数为()\nA.1对 B.2对C.3对 D.4对11、△ABC∽△A1B1C1,相似比为2:3,△A1B1C1∽△A2B2C2,相似比为5:4,则△ABC与△A2B2C2的相似比为()A. B.C. D.12、在比例尺1:10000的地图上,相距2cm的两地的实际距离是()A.200cm B.200dmC.200m D.200km13.RtΔABC中,∠ACB=90°,CD⊥AB于D,DE⊥AC于E,那么和ΔABC相似但不全等的三角形共有()(A)1个(B)2个(C)3个(D)4个14.在RtΔABC中,∠C=90°,CD⊥AB于D,下列等式中错误的是()(A)AD•BD=CD2(B)AC•BD=CB•AD(C)AC2=AD•AB(D)AB2=AC2+BC215.在平行四边形ABCD中,E为AB中点,EF交AC于G,交AD于F,=则的比值是( )(A)2(B)3(C)4(D)516.在RtΔABC中,∠ACB=90°,CD⊥AB于D,则BD∶AD等于( )(A)a∶b(B)a2∶b2(C)∶(D)不能确定17.已知直角三角形的斜边长为13CM,两条直角边的和为17CM,则斜边上的高的长度为-------------18.RtΔABC中,CD是斜边上的高线,,AB=29。AD=25,则DC=---------19.如图,在ΔABC中,D为AC上一点,E为延长线上一点,且BE=AD,ED和AB交于F求证:EF∶FD=AC∶BC20、如图,矩形ABCD中,E为BC上一点,DF⊥AE于F.(1)ΔABE与ΔADF相似吗?请说明理由.(2)若AB=6,AD=12,BE=8,求DF的长.(11分)21.如图,在ΔABC中,∠ABC=90°,CD⊥AB于D,DE⊥AC于E,求证:=22、如图,在RtΔABC中,∠ADB=90°,CD⊥AB于C,AC=20CM,BC=9CM,求AB及BD的长\n23、如图,已知ΔABC中,AD为BC边中线,E为AD上一点,并且CE=CD,∠EAC=∠B,求证:ΔAEC∽ΔBDA,DC2=AD•AE24如图,已知PΔABC中,AD,BF分别为BC,AC边上的高,过D作AB的垂线交AB于E,交BF于G,交AC延长线于H,求证:DE2=EG•EH25如图,已知正方形ABCD,E是AB的中点,F是AD上的一点,EG⊥CF且AF=AD,于,(1)求证:CE平分∠BCF,(2)AB2=CG•FG1、有一个三角形草地,三边的长度分别为18m,30m,42m,现在画它的平面图,使最长边的长度为7cm,求其余两边的长度,并在下图中画出其余两边.2、下图是步枪在瞄准时的俯视图,OE是从眼睛到准星的距离80cm,AB是步枪上的准星宽度2mm,OF是眼睛到正方形靶子的距离160m,求正方形靶子的宽度?\nABCEDoF80160000.24、某生活小区的居民筹集资金1600元,计划在一块上、下底分别为10m,20m的梯形空地上种植花木(如下图)(1)他们在△AMD和△BMC地带种植太阳花,单价为8元/m2。当在△AMD地带(图中阴影部分)中种满花后,共用去了160元。请计算种满△BMC地带所需的费用是多少元。(2)若其余地带要种的有玫瑰花和茉莉花两种花木可供选择,单价分别为12元/m2、10元/m2,应选择哪种花木,刚好用完所筹集的资金?(3)若梯形ABCD为等腰梯形,面积不变(如图2),请你设计一种花坛图案,即在梯形内找到一点P,使得△APB≌△DPC,且△APD的面积与△BPC的面积相等,并说明你的理由。5、埃及著名的考古专家穆罕穆德决定重新测量胡夫金字塔的高度.在一个烈日高照的上午.他和儿子小穆罕穆德来到了金字塔脚下,他想考一考年仅14岁的小穆罕穆德.2米木杆皮尺平面镜给你一条2米高的木杆,一把皮尺,一面平面镜.你能利用所学知识来测出塔高吗?EACBD┐┐提示:\n6、如图,一电线杆AB的影子分别落在了地上和墙上,某一时刻,小明竖起1米高的直杆,量得其影长为0.5米,此时,他又量得电线杆AB落在地上的影子BD长3米,落在墙上的影子CD的高为2米。小明用这些数据很快算出了电线杆AB的高。请你计算,电线杆AB的高为7、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射桌面后,在地面上形成阴影(圆形)的示意图.已知桌面的直径为1.2米,桌面距离地面1米.若灯泡距离地面3米,则地面上阴影部分的面积为多少?8.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,求窗口底边离地面的高BC.9.如图,测量小玻璃管口径的量具ABC,AB的长为10cm,AC被分为60等份.如果小玻璃管口DE正好对着量具上20等份处(DE∥AB),那么小玻璃管口径DE是多大?\n10.已知:如图,小明在打网球时,要使球恰好能打过网,而且落在离网5米的位置上,则球拍球的高度应为11点P从点B开始沿BA边向点A以每秒2cm的速度移动,点Q从点A开始沿AC边向点C以每秒4cm的速度移动.如果P、Q分别从B、A同时出发,经过几秒钟△APQ与△ABC相似?试说明理由.\n第一课时课题锐角三角函数(一)教学三维目标一.知识目标初步了解正弦、余弦、正切概念;能较正确地用siaA、cosA、tanA表示直角三角形中两边的比;熟记功30°、45°、60°角的三角函数,并能根据这些值说出对应的锐角度数。二.能力目标逐步培养学生观察、比较、分析,概括的思维能力。三.情感目标提高学生对几何图形美的认识。(二).教材分析:1.教学重点:正弦,余弦,正切概念2.教学难点:用含有几个字母的符号组siaA、cosA、tanA表示正弦,余弦,正切(三)教学程序一.探究活动1.课本引入问题,再结合特殊角30°、45°、60°的直角三角形探究直角三角形的边角关系。2.归纳三角函数定义。siaA=,cosA=,tanA=3例1.求如图所示的Rt⊿ABC中的siaA,cosA,tanA的值。BBCAAC4.学生练习P21练习1,2,3\n二.探究活动二1.让学生画30°45°60°的直角三角形,分别求sia30°cos45°tan60°归纳结果30°45°60°siaAcosAtanA2.求下列各式的值(1)sia30°+cos30°(2)sia45°-cos30°(3)+ta60°-tan30°三.拓展提高1.P82例4.(略)2.如图,在⊿ABC中,∠A=30°,tanB=,AC=2,求ABABC四.小结五.作业课本p862,3,6,7,8,10第二课时课题解直角三角形应用(一) 一.教学三维目标\n(一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.三、教学过程(一)知识回顾1.在三角形中共有几个元素?2.直角三角形ABC中,∠C=90°,a、b、c、∠A、∠B这五个元素间有哪些等量关系呢?(1)边角之间关系sinA=cosA=tanA(2)三边之间关系 a2+b2=c2(勾股定理) (3)锐角之间关系∠A+∠B=90°. 以上三点正是解直角三角形的依据,通过复习,使学生便于应用.(二) 探究活动1.我们已掌握Rt△ABC的边角关系、三边关系、角角关系,利用这些关系,在知道其中的两个元素(至少有一个是边)后,就可求出其余的元素.这样的导语既可以使学生大概了解解直角三角形的概念,同时又陷入思考,为什么两个已知元素中必有一条边呢?激发了学生的学习热情. 2.教师在学生思考后,继续引导“为什么两个已知元素中至少有一条边?”让全体学生的思维目标一致,在作出准确回答后,教师请学生概括什么是解直角三角形?(由直角三角形中除直角外的两个已知元素,求出所有未知元素的过程,叫做解直角三角形). 3.例题评析 例1在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=a=,解这个三角形. 例2在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,且b=20=35,解这个三角形(精确到0.1).解直角三角形的方法很多,灵活多样,学生完全可以自己解决,但例题具有示范作用.因此,此题在处理时,首先,应让学生独立完成,培养其分析问题、解决问题能力,同时渗透数形结合的思想.其次,教师组织学生比较各种方法中哪些较好,选一种板演.完成之后引导学生小结“已知一边一角,如何解直角三角形?” \n答:先求另外一角,然后选取恰当的函数关系式求另两边.计算时,利用所求的量如不比原始数据简便的话,最好用题中原始数据计算,这样误差小些,也比较可靠,防止第一步错导致一错到底. 例3在Rt△ABC中,a=104.0,b=20.49,解这个三角形.(三)巩固练习 在△ABC中,∠C为直角,AC=6,的平分线AD=4,解此直角三角形。 解直角三角形是解实际应用题的基础,因此必须使学生熟练掌握.为此,教材配备了练习针对各种条件,使学生熟练解直角三角形,并培养学生运算能力. (四)总结与扩展 请学生小结:1在直角三角形中,除直角外还有五个元素,知道两个元素(至少有一个是边),就可以求出另三个元素.2解决问题要结合图形。四、布置作业.p96第1,2题 第三课时解直三角形应用(二) 一.教学三维目标(一)、知识目标 使学生了解仰角、俯角的概念,使学生根据直角三角形的知识解决实际问题. (二)、能力目标 逐步培养分析问题、解决问题的能力. 二、教学重点、难点和疑点 1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而解决问题. 三、教学过程\n (一)回忆知识1.解直角三角形指什么? 2.解直角三角形主要依据什么? (1)勾股定理:a2+b2=c2 (2)锐角之间的关系:∠A+∠B=90° (3)边角之间的关系: tanA= (二)新授概念 1.仰角、俯角 当我们进行测量时,在视线与水平线所成的角中,视线在水平线上方的角叫做仰角,在水平线下方的角叫做俯角. 教学时,可以让学生仰视灯或俯视桌面以体会仰角与俯角的意义. 2.例1如图(6-16),某飞机于空中A处探测到目标C,此时飞行高度AC=1200米,从飞机上看地平面控制点B的俯角α=16°31′,求飞机A到控制点B距离(精确到1米)解:在Rt△ABC中sinB=AB===4221(米) 答:飞机A到控制点B的距离约为4221米.\n 例2.2003年10月15日“神州”5号载人航天飞船发射成功。当飞船完成变轨后,就在离地形表面350km的圆形轨道上运行。如图,当飞船运行到地球表面上P点的正上方时,从飞船上能直接看到地球上最远的点在什么位置?这样的最远点与P点的距离是多少?(地球半径约为6400km,结果精确到0.1km)分析:从飞船上能看到的地球上最远的点,应是视线与地球相切时的切点。将问题放到直角三角形FOQ中解决。F.OPQ解决此问题的关键是在于把它转化为数学问题,利用解直角三角形知识来解决,在此之前,学生曾经接触到通过把实际问题转化为数学问题后,用数学方法来解决问题的方法,但不太熟练.因此,解决此题的关键是转化实际问题为数学问题,转化过程中着重请学生画几何图形,并说出题目中每句话对应图中哪个角或边(包括已知什么和求什么),会利用平行线的内错角相等的性质由已知的俯角α得出Rt△ABC中的∠ABC,进而利用解直角三角形的知识就可以解此题了.例1小结:本章引言中的例子和例1正好属于应用同一关系式sinA=来解决的两个实际问题即已知和斜边,求∠α的对边;以及已知∠α和对边,求斜边. (三).巩固练习 1.热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋楼底部的俯角为60,热气球与高楼的水平距离为120m,这栋高楼有多高(结果精确到0.1`m)2.如图6-17,某海岛上的观察所A发现海上某船只B并测得其俯角α=80°14′.已知观察所A的标高(当水位为0m时的高度)为43.74m,当时水位为+2.63m,求观察所A到船只B的水平距离BC(精确到1m)\n教师在学生充分地思考后,应引导学生分析:(1).谁能将实物图形抽象为几何图形?请一名同学上黑板画出来.(2).请学生结合图形独立完成。 3如图6-19,已知A、B两点间的距离是160米,从A点看B点的仰角是11°,AC长为1.5米,求BD的高及水平距离CD. 此题在例1的基础上,又加深了一步,须由A作一条平行于CD的直线交BD于E,构造出Rt△ABE,然后进一步求出AE、BE,进而求出BD与CD. 设置此题,既使成绩较好的学生有足够的训练,同时对较差学生又是巩固,达到分层次教学的目的.练习:为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度为1.72米,求树高(精确到0.01米). 要求学生根据题意能画图,把实际问题转化为数学问题,利用解直角三角形的知识来解决它. (四)总结与扩展 请学生总结:本节课通过两个例题的讲解,要求同学们会将某些实际问题转化为解直角三角形问题去解决;今后,我们要善于用数学知识解决实际问题. 四、布置作业 1.课本p96第3,.4,.6题 第四课时解直三角形应用(三)(一)教学三维目标\n(一)知识目标使学生会把实际问题转化为解直角三角形问题,从而会把实际问题转化为数学问题来解决.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数学来源于实践又反过来作用于实践的观点,培养学生用数学的意识.二、教学重点、难点1.重点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形元素之间的关系,从而利用所学知识把实际问题解决.2.难点:要求学生善于将某些实际问题中的数量关系,归结为直角三角形中元素之间的关系,从而利用所学知识把实际问题解决.三、教学过程1.导入新课上节课我们解决的实际问题是应用正弦及余弦解直角三角形,在实际问题中有时还经常应用正切和余切来解直角三角形,从而使问题得到解决.2.例题分析例1.如图6-21,厂房屋顶人字架(等腰三角形)的跨度为10米,∠A-26°,求中柱BC(C为底边中点)和上弦AB的长(精确到0.01米).分析:上图是本题的示意图,同学们对照图形,根据题意思考题目中的每句话对应图中的哪个角或边,本题已知什么,求什么?由题意知,△ABC为直角三角形,∠ACB=90°,∠A=26°,AC=5米,可利用解Rt△ABC的方法求出BC和AB.学生在把实际问题转化为数学问题后,大部分学生可自行完成例题小结:求出中柱BC的长为2.44米后,我们也可以利用正弦计算上弦AB的长。如果在引导学生讨论后小结,效果会更好,不仅使学生掌握选何关系式,更重要的是知道为什么选这个关系式,以培养学生分析问题、解决问题的能力及计算能力,形成良好的学习习惯.另外,本题是把解等腰三角形的问题转化为直角三角形的问题,渗透了转化的数学思想. 例2.如图,一艘海轮位于灯塔P的北偏东65方向,距离灯塔80海里的A处,它沿正南方向航行一段时间后,到达位于灯塔P的南东34方向上的B处。这时,海轮所在的B处距离灯塔P有多远(\n精确到0.01海里)?PAB6534.引导学生根据示意图,说明本题已知什么,求什么,利用哪个三角形来求解,用正弦、余弦、正切、余切中的哪一种解较为简便? 3巩固练习 为测量松树AB的高度,一个人站在距松树15米的E处,测得仰角∠ACD=52°,已知人的高度是1.72米,求树高(精确到0.01米). 首先请学生结合题意画几何图形,并把实际问题转化为数学问题.Rt△ACD中,∠D=Rt∠,∠ACD=52°,CD=BE=15米,CE=DB=1.72米,求AB?\n (三)总结与扩展 请学生总结:通过学习两个例题,初步学会把一些实际问题转化为数学问题,通过解直角三角形来解决,具体说,本节课通过让学生把实际问题转化为数学问题,利用正切或余切解直角三角形,从而把问题解决.本课涉及到一种重要教学思想:转化思想.四、布置作业1.某一时刻,太阳光线与地平面的夹角为78°,此时测得烟囱的影长为5米,求烟囱的高(精确到0.1米).2.如图6-24,在高出地平面50米的小山上有一塔AB,在地面D测得塔顶A和塔基B的仰面分别为50°和45°,求塔高.3.在宽为30米的街道东西两旁各有一楼房,从东楼底望西楼顶仰角为45°,从西楼顶望东楼顶,俯角为10°,求西楼高(精确到0.1米).第五课时解直三角形应用(四)一.教学三维目标(一)知识目标致\n使学生懂得什么是横断面图,能把一些较复杂的图形转化为解直角三角形的问题.(二)能力目标逐步培养学生分析问题、解决问题的能力.(三)情感目标培养学生用数学的意识;渗透转化思想;渗透数学来源于实践又作用于实践的观点.二、教学重点、难点1.重点:把等腰梯形转化为解直角三角形问题;2.难点:如何添作适当的辅助线.三、教学过程1.出示已准备的泥燕尾槽,让学生有感视印象,将其横向垂直于燕尾槽的平面切割,得横截面,请学生通过观察,认识到这是一个等腰梯形,并结合图形,向学生介绍一些专用术语,使学生知道,图中燕尾角对应哪一个角,外口、内口和深度对应哪一条线段.这一介绍,使学生对本节课内容很感兴趣,激发了学生的学习热情. 2.例题 例燕尾槽的横断面是等腰梯形,图6-26是一燕尾槽的横断面,其中燕尾角B是55°,外口宽AD是180mm,燕尾槽的深度是70mm,求它的里口宽BC(精确到1mm). 分析:(1)引导学生将上述问题转化为数学问题;等腰梯形ABCD中,上底AD=180mm,高AE=70mm,∠B=55°,求下底BC.(2)让学生展开讨论,因为上节课通过做等腰三角形的高把其分割为直角三角形,从而利用解直角三角形的知识来求解.学生对这一转化有所了解.因此,学生经互相讨论,完全可以解决这一问题. 例题小结:遇到有关等腰梯形的问题,应考虑如何添加辅助线,将其转化为直角三角形和矩形的组合图形,从而把求等腰梯形的下底的问题转化成解直角三角形的问题.3.巩固练习如图6-27,在离地面高度5米处引拉线固定电线杆,拉线和地面成60°角,求拉线AC的长以及拉线下端点A与杆底D的距离AD(精确到0.01米). 分析:(1)请学生审题:因为电线杆与地面应是垂直的,那么图6-27中△ACD是直角三角形.其中CD=5m,∠CAD=60°,求AD、AC的长.\n(2)学生运用已有知识独立解决此题.教师巡视之后讲评. (三)小结请学生作小结,教师补充.本节课教学内容仍是解直角三角形,但问题已是处理一些实际应用题,在这些问题中,有较多的专业术语,关键是要分清每一术语是指哪个元素,再看是否放在同一直角三角形中,这时要灵活,必要时还要作辅助线,再把问题放在直角三角形中解决.在用三角函数时,要正确判断边角关系.四、布置作业1.如图6-28,在等腰梯形ABCD中,DC∥AB,DE⊥AB于E,AB=8,DE=4,cosA=,求CD的长.2.教材课本习题P96第6,7,8题 第六课时解直三角形应用(五) 一.教学三维目标(一)知识目标明巩固直角三角形中锐角的三角函数,学会解关于坡度角和有关角度的问题.(二)能力目标逐步培养学生分析问题解决问题的能力,进一步渗透数形结合的数学思想和方法.(三)德育目标培养学生用数学的意识;渗透数学来源于实践又反过来作用于实践的辩证唯物主义观点.二、教学重点、难点和疑点1.重点:能熟练运用有关三角函数知识.2.难点:解决实际问题.3.疑点:株距指相邻两树间的水平距离,学生往往理解为相邻两树间的距离而造成错误.三、教学过程1.探究活动一教师出示投影片,出示例题.例1如图6-29,在山坡上种树,要求株距(相邻两树间的水平距离)是5.5m,测得斜坡的倾斜角是24°,求斜坡上相邻两树的坡面距离是多少(精确到0.1m).\n分析:1.例题中出现许多术语——株距,倾斜角,这些概念学生未接触过,比较生疏,而株距概念又是学生易记错之处,因此教师最好准备教具:用木板钉成一斜坡,再在斜坡上钉几个铁钉,利用这种直观教具更容易说明术语,符合学生的思维特点.2.引导学生将实际问题转化为数学问题画出图形(上图6-29(2)).已知:Rt△ABC中,∠C=90°,AC=5.5,∠A=24°,求AB.3.学生运用解直角三角形知识完全可以独立解决例1.教师可请一名同学上黑板做,其余同学在练习本上做,教师巡视. 答:斜坡上相邻两树间的坡面距离约是6.0米. 教师引导学生评价黑板上的解题过程,做到全体学生都掌握. 2.探究活动二例2如图6-30,沿AC方向开山修渠,为了加快施工速度,要从小山的另一边同时施工,从AC上的一点B取∠ABD=140°,BD=52cm,∠D=50°,那么开挖点E离D多远(精确到0.1m),正好能使A、C、E成一条直线? 这是实际施工中经常遇到的问题.应首先引导学生将实际问题转化为数学问题.由题目的已知条件,∠D=50°,∠ABD=140°,BD=520米,求DE为多少时,A、C、E在一条直线上。学生观察图形,不难发现,∠E=90°,这样此题就转化为解直角三角形的问题了,全班学生应该能独立准确地完成. 解:要使A、C、E在同一直线上,则∠ABD是△BDE的一个外角.∴∠BED=∠ABD-∠D=90°.\n∴DE=BD·cosD=520×0.6428=334.256≈334.3(m).答:开挖点E离D334.3米,正好能使A、C、E成一直线,提到角度问题,初一教材曾提到过方向角,但应用较少.因此本节课很有必要补充一道涉及方向角的实际应用问题,出示投影片.练习P95练习1,2。 补充题:正午10点整,一渔轮在小岛O的北偏东30°方向,距离等于10海里的A处,正以每小时10海里的速度向南偏东60°方向航行.那么渔轮到达小岛O的正东方向是什么时间?(精确到1分).学生虽然在初一接触过方向角,但应用很少,所以学生在解决这个问题时,可能出现不会画图,无法将实际问题转化为几何问题的情况.因此教师在学生独自尝试之后应加以引导:(1)确定小岛O点;(2)画出10时船的位置A;(3)小船在A点向南偏东60°航行,到达O的正东方向位置在哪?设为B;(4)结合图形引导学生加以分析,可以解决这一问题.此题的解答过程非常简单,对于程度较好的班级可以口答,以节省时间补充一道有关方向角的应用问题,达到熟练程度.对于程度一般的班级可以不必再补充,只需理解前三例即可.补充题:如图6-32,海岛A的周围8海里内有暗礁,鱼船跟踪鱼群由西向东航行,在点B处测得海岛A位于北偏东60°,航行12海里到达点C处,又测得海岛A位于北偏东30°,如果鱼船不改变航向继续向东航行.有没有触礁的危险? 如果时间允许,教师可组织学生探讨此题,以加深对方向角的运用.同时,学生对这种问题也非常感兴趣,教师可通过此题创设良好的课堂气氛,激发学生的学习兴趣. 若时间不够,此题可作为思考题请学生课后思考.(三)小结与扩展教师请学生总结:在这类实际应用题中,都是直接或间接地把问题放在直角三角形中,虽然有一些专业术语,但要明确各术语指的什么元素,要善于发现直角三角形,用三角函数等知识解决问题. 利用解直角三角形的知识解决实际问题的一般过程是:(1)将实际问题抽象为数学问题(画出平面图形,转化为解直角三角形的问题);(2)根据条件的特点,适当选用锐角三角函数等去解直角三角形;(3)得到数学问题的答案;(4)得到实际问题的答案。四、布置作业课本习题P979,10 \n第六课时解直三角形应用一、 (一)知识教学点 巩固用三角函数有关知识解决问题,学会解决坡度问题. (二)能力目标 逐步培养学生分析问题、解决问题的能力;渗透数形结合的数学思想和方法. (三)德育目标 培养学生用数学的意识,渗透理论联系实际的观点. 二、教学重点、难点和疑点 1.重点:解决有关坡度的实际问题. 2.难点:理解坡度的有关术语.3.疑点:对于坡度i表示成1∶m的形式学生易疏忽,教学中应着重强调,引起学生的重视.三、教学过程1.创设情境,导入新课.例同学们,如果你是修建三峡大坝的工程师,现在有这样一个问题请你解决:如图6-33 \n水库大坝的横断面是梯形,坝顶宽6m,坝高23m,斜坡AB的坡度i=1∶3,斜坡CD的坡度i=1∶2.5,求斜坡AB的坡面角α,坝底宽AD和斜坡AB的长(精确到0.1m). 同学们因为你称他们为工程师而骄傲,满腔热情,但一见问题又手足失措,因为连题中的术语坡度、坡角等他们都不清楚.这时,教师应根据学生想学的心情,及时点拨.通过前面例题的教学,学生已基本了解解实际应用题的方法,会将实际问题抽象为几何问题加以解决.但此题中提到的坡度与坡角的概念对学生来说比较生疏,同时这两个概念在实际生产、生活中又有十分重要的应用,因此本节课关键是使学生理解坡度与坡角的意义. 介绍概念坡度与坡角 结合图6-34,教师讲述坡度概念,并板书:坡面的铅直高度h和水平宽度的比叫做坡度(或叫做坡比),一般用i表示。即i=,把坡面与水平面的夹角α叫做坡角. 引导学生结合图形思考,坡度i与坡角α之间具有什么关系? 答:i==tan 这一关系在实际问题中经常用到,教师不妨设置练习,加以巩固. 练习(1)一段坡面的坡角为60°,则坡度i=______; ______,坡角______度. 为了加深对坡度与坡角的理解,培养学生空间想象力,教师还可以提问: (1)坡面铅直高度一定,其坡角、坡度和坡面水平宽度有什么关系?举例说明. (2)坡面水平宽度一定,铅直高度与坡度有何关系,举例说明.\n 答:(1) 如图,铅直高度AB一定,水平宽度BC增加,α将变小,坡度减小, 因为tan=,AB不变,tan随BC增大而减小 (2) 与(1)相反,水平宽度BC不变,α将随铅直高度增大而增大,tanα 也随之增大,因为tan=不变时,tan随AB的增大而增大 2.讲授新课 引导学生分析例题,图中ABCD是梯形,若BE⊥AD,CF⊥AD,梯形就被分割成Rt△ABE,矩形BEFC和Rt△CFD,AD=AE+EF+FD,AE、DF可在△ABE和△CDF中通过坡度求出,EF=BC=6m,从而求出AD. 以上分析最好在学生充分思考后由学生完成,以培养学生逻辑思维能力及良好的学习习惯. 坡度问题计算过程很繁琐,因此教师一定要做好示范,并严格要求学生,选择最简练、准确的方法计算,以培养学生运算能力. 解:作BE⊥AD,CF⊥AD,在Rt△ABE和Rt△CDF中, ∴AE=3BE=3×23=69(m). FD=2.5CF=2.5×23=57.5(m). \n∴AD=AE+EF+FD=69+6+57.5=132.5(m). 因为斜坡AB的坡度i=tan=≈0.3333,查表得 α≈18°26′ 答:斜坡AB的坡角α约为18°26′,坝底宽AD为132.5米,斜坡AB的长约为72.7米. 3.巩固练习 (1)教材P124.2 由于坡度问题计算较为复杂,因此要求全体学生要熟练掌握,可能基础较好的学生会很快做完,教师可再给布置一题. (2)利用土埂修筑一条渠道,在埂中间挖去深为0.6米的一块(图6-35阴影部分是挖去部分),已知渠道内坡度为1∶1.5,渠道底面宽BC为0.5米,求: ①横断面(等腰梯形)ABCD的面积; ②修一条长为100米的渠道要挖去的土方数. 分析:1.引导学生将实际问题转化为数学问题. 2.要求S等腰梯形ABCD,首先要求出AD,如何利用条件求AD? 3.土方数=S·l\n ∴AE=1.5×0.6=0.9(米). ∵等腰梯形ABCD, ∴FD=AE=0.9(米). ∴AD=2×0.9+0.5=2.3(米). 总土方数=截面积×渠长 =0.8×100=80(米3). 答:横断面ABCD面积为0.8平方米,修一条长为100米的渠道要挖出的土方数为80立方米. (四)总结与扩展 引导学生回忆前述例题,进行总结,以培养学生的概括能力. 1.弄清俯角、仰角、株距、坡度、坡角、水平距离、垂直距离、水位等概念的意义,明确各术语与示意图中的什么元素对应,只有明确这些概念,才能恰当地把实际问题转化为数学问题. 2.认真分析题意、画图并找出要求的直角三角形,或通过添加辅助线构造直角三角形来解决问题. 3.选择合适的边角关系式,使计算尽可能简单,且不易出错. 4.按照题中的精确度进行计算,并按照题目中要求的精确度确定答案以及注明单位. 四、布置作业 1.看教材,培养看书习惯,作本章小结.2.课本习题P96第5,8题 \n五一促销方案一.活动主题:购凯莱地板免费游港澳好礼送不停赢取华硕笔记本电脑二.活动时间:2011年4月9日——2011年5月6日三.活动范围:全省凯莱专卖店对于不参加本次促销活动的专卖店兰州公司取消2011全年物料、礼品、人员及促销政策的支持,特此说明!四、活动目标:全省区域销售50000平方米五、活动背景与市场分析:2011年仍是甘肃房地产继续实施宏观调控的一年,是抑制通胀、调结构、保增长、惠民生的又一年,2011年甘肃消费市场在各种因素作用下,但经济整体稳定向好,刚性需求、保障性需求的政策导向决定了2011年市场仍然存在很多机会,特别是对于凯莱这样正在高速成长品牌企业。1.我们分析认为2011年是甘肃地板的洗牌年,品牌的集中度会越来越高,消费者对品牌的消费意识会更强,因此,必须对主销市场实施强有力的组合措施,方能在地板行业的整合年获得我们应由的市场成果。2.2011年春来早,全省凯莱在3.15促销中战绩平平,但是给5.1促销与销售提供了良好的机会,因此尽早投入这场销售的争夺战中,意义重大。从以往的5.1促销经验来看,早启动效果更明显。3.以甘肃地板市场来看,二、三级市场呈现差异性需求,各专卖店因地制宜,针对各级市场特点有效的开展促销活动并组合相应的产品才能谋求最大的市场占有。4.2011年五一促销,重点提升扩大凯莱地板品牌知名度、市场占有率和客户口碑为营销的活动设计地板行业发展分析首先要肯定地板在未来几年的发展前景是辉煌的,为什么这么说呢?我们可以先从以下几点分析:首先,就目前来说全国人民最关心的问题是什么?是房价。上至国家领导,下至普通百姓这一问题已经成为了主题,而房地产作为中国的支柱产业,也在有效的拉动着内需和经济的发展,作为与房地产相伴的建材行业包括木地板行业也会因为房地产的不断升温而不断壮大。纵观全国各地,到处都是旧城改造,新城建设。就甘肃各地来说,房子这几年也是空前的多,据有关部门调查今明两年全省商品房的交易量在50万套以上,经济适用房和廉租房的交付率在20万套左右,如此多的待装修房其中所孕育的商机不言自明,只要有楼房就要装修,只要装修就要用地板,只要用地板我们就有机会,所以有此大好机会就应该及时抓住。其次,就我们所了解到的,和看到的情况是有些地方木地板已普及到了农村,中国作为农业大国,农村的市场比城市还要巨大,近几年由于国家针对农村出台了各种惠民政策,中国的农村也因此以前所未有的速度富了起来,而中国人也有着根深蒂固的习惯,那就是有钱了先修房,而现在的主流就是修完房子了还要装修,而且装修还要有档次,那么木地板作为一种高档消费品的象征,必然会受到广大农村人民的青睐。现在象甘南的某些农村木地板已经大面积使用了,河东各地农村也在逐渐流行,放眼望去木地板在农村的前景也一片大好。而公司也适时获得了建材下乡推进单位的荣誉,这对我们有效占领农村市场提供了很好的帮助。机会是给有准备的人的,眼光要放远些,谋而后动,方能决胜于千里。再次,根据全国发展的速度来看,甘肃的发展还是相对滞后的,相比较发达地区木地板使用的情况来看,甘肃的木地板总体使用量占有率还不是太高。因此从发展滞后、占有率低到发展快、占有率高之间的空间还是非常大的,而这些空间对我们木地板销量的提高也是非常大的。总的来看木地板发展的前景还是非常好的,所以让我们抓住机遇,共同赚钱,共同发展。六、活动细则:买凯莱地板邀您香港澳门免费游1.凡订购凯莱实木区地板(包括:多层实木,多层仿古实木,三层实木,实木)80平米以上均可获赠由凯莱地板提供的香港、澳门旅游(每个订单只限一人)。2.已定单客户在享受免费港澳游前必须先交纳80%的货款。3.若不足80平米由客户补足剩余费用(每平米补差价40元).4.如已定单客户不想享受免费港澳游,则视为自动放弃。5.参加港澳游的订单客户以实铺面积为准。6.港澳游客户的旅行时间可由自己决定(除五一、十一、元旦等节假日)7.其他事宜按旅行社的规定执行(凯莱地板只负责往返路费、食宿及首道景点门票费用,其他费用均由客户自理)8.特价产品及限量产品除外畅想凯莱品质赢取华硕笔记本奖品:华硕笔记本电脑型号:待定活动日期:2011年4月9日至2011年5月6日在活动期间内订单客户均可获赠由凯莱地板提供的免费华硕笔记本电脑抽奖卷一张,在2011年5月6日下午2点在各专卖店统一抽奖。抽奖规则:按订单先后顺序兰州地区累计500平米抽取电脑一台;其他地区累计688平米抽取电脑一台;特价产品及限量产品除外活动期间凡订单客户都有正常礼品相送,价格史上最惠!七、活动说明:此次活动要求全省联动,各地尽量出现69元/平米(A系列两款裸板价),89元/平米(H系列特款特卖大包价)的特价地板,以最大限度的来收获订单,然后再转化为升级定单,以此来摧毁竞争对手的经营信心,达到多订单对凯莱品牌宣传的目的。订金双倍、十倍翻活动期间内小区意向订金交纳10元当100元使用;交纳100元当200元使用;交纳200元当400元使用。以此来拦截装修业主的意念,把凯莱作为考察的第一对象。礼品支持(礼品有限,欲购从速!)在公司没有礼品的情况下,可自己在当地组织一些礼品。八.活动执行进程控制九.活动物料1.立柱、拱门:各地专卖店在活动期间户外必须立拱门和立柱,活动遮阳伞或帐篷可在专卖店门口或建材市场门口放立,附近并有专人发放活动资料!以此来烘托活动气氛。如没有立柱拱门的经销商可向兰州公司申请借用或购买,如需购买的经销商请在4月2日之前向兰州公司汇款下定单由兰州公司统一去制作,制作时间为十日左右。2海报(喷绘):请张贴在店面最显眼的位置;必须保证当地最新开盘的所有小区都有张贴;各级经销商在可以的情况下可进行街道、路口、超市等繁华地段进行地毯式的张贴(此规格建议为1.2米*0.8米),以有效告知促销信息,由兰州公司统一提供设计样稿,费用一人一半。数量不限,大小不限!机会只有一次!1.单页:由公司统一设计制作发放到各地,要求各地各店夹报或专人有效散发,不得积压于手中,配置多少,必须全部使用完毕。制作标准:157克A4铜版纸。2.礼品对头:本次活动的礼品堆头请摆放在正门进店一米处位置,整体呈(品)字形堆放,最前面摆放门口垫20个以上(丝带捆绑),正反“礼”字贴放置于礼品堆头的最上方,规格不小于1米*1米。(“礼”字贴制作标准参考图片)5.特价签:针对本次活动,公司单独制作实木地板“免费游港澳”、强化地板“赢取华硕笔记本电脑”、特价产品的促销标签,各店必须明显贴示于展示样板上。6.有条件的(特别是临街店)专卖店一定要用公司统一设计好的喷绘画面将门头包起来,不要把入口挡住,尽量往门头以上位置去做,能做多大就做多大,此目的就是让消费者一定要感觉到震撼,用做特殊宣传的手段放大进店吸引。由兰州公司统一提供设计样稿并制作,费用一人一半。十.渠道宣传要求1.促销喷绘一定要保证当地所有新开盘小区都有悬挂2.横幅悬挂小区/街道/建材市场进行宣传3.单页夹报或有专门人员进小区上门投递4.充气立柱、活动遮阳伞、在小区门口/广场/建材市场门口/专卖店门口放立,附近并有专人发放活动资料5.活动广告管理方法:要求各经销商进行充量的广告投入,必须管控专卖店所有人员制定执行充分宣传。特别说明:要求各地必须无条件参加本次活动,并严格执行公司规定的相关政策。对违反相关规定的和不参加本次促销的经销商按照本方案第三条执行外,对该地区的区域保护公司也不做保证!十一.样板:现无实木样板的经销商抓紧时间在接到通知三日内完成上样工作,每店不少于四款(多层仿古),每款六片起发。十二.奖品成本港澳旅游:3200元/人。定实木区地板80平米以上就可享受免费港澳游,每平米成本40元,建议各经销商把吊牌价提高每平米20元,活动时利润每平米再降20元。建议在店面销售实木区地板时尽量以折扣形式跟客户进行讨价还价,辅料也另算。华硕笔记本电脑:每台2800元左右。按累计订单800平米抽奖一次折算后每平米3.5元。抽奖券由兰州公司统一设计制作,市级发放80张,县级50张。抽奖定在五一黄金周的最后一天下午两点左右,最好在当地聘请一位主持人来活跃现场气氛,现场布置一定要大气,要有节日的气氛。门口红地毯能铺多大就铺多大,音响声音尽量放大,最好选用一些比较劲爆的DJ音乐,开奖时主持人要不停的大声说“凯莱地板促销活动还在继续,没有订单的朋友抓紧时间订单,可能下一台笔记本电脑就是你的”等一些促进客户订单的话语,拱门、立柱、吊旗、礼花、礼品堆头、地毯、条幅等等这些都是营造气氛的道具。以上两项奖项消费者不可兼得。十三.店面宣传全省统一口径:(对外宣传时可用厂家的角度进行)庆祝五一暨凯莱地板十二周年厂庆,全国厂商联动,十二年来价位首破底线,五一长假结束后全球统一调价。全国1800家凯莱地板专卖店同步联欢庆祝凯莱十二周年厂庆,定地板免费游港澳,赢取华硕笔记本电脑,凯莱史上首次,机会只有一次!活动只要订单累积达到688平方米就可抽奖一次(不管十单八单,只要一到立马现场抽奖产生)实木地板,高贵、时尚、典雅,专为成功人士量身打造!今日订单价位史上最低,并且凯莱提供免费、轻松港澳十五日游!凯莱地板,中国地板十大品牌、中国品牌500强、首批出口免验产品,品牌的荣誉保证了凯莱的品质。全省各店面导购人员要自信加勇敢的说:虽然凯莱地板的品牌不是行业的第一,但是凯莱的品质绝对是行业的第一。本次促销活动凯莱厂家计划在全国1800家专卖店(不包括香港、澳门)共抽取3500台华硕笔记本电脑,计划在全国共计2800人参加免费港澳游。机会只有一次。十四.小区、街道横幅内容1.购凯莱地板送港澳游,凯莱史上首次,机会只有一次!2.购凯莱地板赢取华硕笔记本,现场开奖,真实有效!机会只有一次!3.凯莱地板五一全国厂商联动,十二年来价位首破底线,机会只有一次!4.凯莱地板迎五一,泄洪价69元,真的不能再低了!机会只有一次!十五.喷绘广告制作投放补贴说明凯莱兰州公司针对本次促销额外补贴各地经销商制作喷绘广告,按每平米12元1:1投放,既一人一半,制作当时兑现。要求必须广告画面统一,尺寸根据当地规格由兰州公司企划统一制作完成后发往各地,在收到本次促销通知后三日内把所需广告规格尺寸报至兰州公司(0931-8735767或各区域经理),由兰州统一制作。数量不限,大小不限,望各位经销商伙伴充分抓出这次宣传的机会来提高凯莱在当地的知名度!时间紧迫,过期视为自动放弃!五一促销做的好不好直接影响到全年的销售计划,希望各位尊贵的合作伙伴不要轻视本次促销。现在销售的方案有了,想不想赚到钱,就看你的行动了。如有疑问请致电:13609313753苏清乔13919886089孔德宁凯莱地板甘肃品牌管理中心市场部中国·雪狼智援团队2011年3月28日