• 2.41 MB
  • 2022-08-09 发布

高中数学参赛课件 《函数的单调性》

  • 24页
  • 当前文档由用户上传发布,收益归属用户
  1. 1、本文档由用户上传,淘文库整理发布,可阅读全部内容。
  2. 2、本文档内容版权归属内容提供方,所产生的收益全部归内容提供方所有。如果您对本文有版权争议,请立即联系网站客服。
  3. 3、本文档由用户上传,本站不保证质量和数量令人满意,可能有诸多瑕疵,付费之前,请仔细阅读内容确认后进行付费下载。
  4. 网站客服QQ:403074932
《函数的单调性》\n1.3.1-1《函数的单调性》1.2.2《函数的表示法》\n(1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义;(3)能够熟练应用定义判断数在某区间上的的单调性.(2)学会运用函数图象理解和研究函数的性质;教学重点:函数的单调性及其几何意义.教学难点:利用函数的单调性定义判断、证明函数的单调性.教学目的\n观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律:1、观察这三个图象,你能说出图象的特征吗?2、随x的增大,y的值有什么变化?\n画出下列函数的图象,观察其变化规律:1、从左至右图象上升还是下降____?2、在区间________上,随着x的增大,f(x)的值随着______.f(x)=x(-∞,+∞)增大上升\n1、在区间____上,f(x)的值随着x的增大而______.2、在区间_____上,f(x)的值随着x的增大而_____.f(x)=x2(-∞,0](0,+∞)增大减小画出下列函数的图象,观察其变化规律:\nx…-4-3-2-101234…f(x)=x2…16941014916…\n一、函数单调性定义一般地,设函数y=f(x)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量x1,x2,当x1f(x2),那么就说f(x)在区间D上是减函数.2.减函数\n1、函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;注意:2、必须是对于区间D内的任意两个自变量x1,x2;当x1f(x2)分别是增函数和减函数.\n如果函数y=f(x)在某个区间上是增函数或是减函数,那么就说函数y=f(x)在这一区间具有(严格的)单调性,区间D叫做y=f(x)的单调区间.二.函数的单调性定义\nyoxoyxyoxyoxyox在增函数在减函数在增函数在减函数在(-∞,+∞)是减函数在(-∞,0)和(0,+∞)是减函数在(-∞,+∞)是增函数在(-∞,0)和(0,+∞)是增函数yox\n例1、下图是定义在区间[-5,5]上的函数y=f(x),根据图象说出函数的单调区间,以及在每个区间上,它是增函数还是减函数?解:函数y=f(x)的单调区间有[-5,-2),[-2,1),[1,3),[3,5]其中y=f(x)在区间[-5,-2),[1,3)是减函数,在区间[-2,1),[3,5]上是增函数。\n例2、物理学中的玻意耳定律告诉我们,对于一定量的气体,当其体积V减小时,压强p将增大。试用函数的单调性证明之。证明:根据单调性的定义,设V1,V2是定义域(0,+∞)上的任意两个实数,且V10,V2-V1>0又k>0,于是所以,函数是减函数.也就是说,当体积V减少时,压强p将增大.取值定号变形作差结论\n三.判断函数单调性的方法步骤1任取x1,x2∈D,且x10,又由x10所以f(x1)-f(x2)>0,即f(x1)>f(x2)因此f(x)=1/x在(0,+∞)上是减函数。取值定号变形作差判断\n1、法二:作商的方法由x10)yxoy=kx+b(k<0)讨论一般性问题:1、当k变化时函数的单调性有何变化?2、当b变化时函数的单调性有何变化?\n例3.借助计算机作出函数y=-x2+2|x|+3的图象并指出它的的单调区间.\n四、归纳小结函数的单调性一般是先根据图象判断,再利用定义证明.画函数图象通常借助计算机,求函数的单调区间时必须要注意函数的定义域,单调性的证明一般分五步:取值→作差→变形→定号→下结论\n1.书面作业:课本P45习题1.3(A组)第3、4题.五、作业\n再见\n

相关文档